[1] Humphreys M D. Pressure pulsations on rigid airfoils at transonic speeds, NACA RM L51I12[R]. Washington, D.C.: NASA, 1951.
[2] Lee B H K. Self-sustained shock oscillations on airfoils at transonic speeds[J]. Progress in Aerospace Sciences, 2001, 37(2): 147-196.
[3] Doerffer P, Hirsch C, Dussauge J P, et al. NACA0012 with Aileron (Marianna Braza)[M]//Unsteady Effects of Shock Wave Induced Separation. Berlin: Springer, 2011: 101-131.
[4] Jacquin L, Molton P, Deck S, et al. Experimental study of shock oscillation over a transonic supercritical profile[J]. AIAA Journal, 2009, 47(9): 1985-1994.
[5] Dong L. Numerical studies of aircraft buffet with Navier-Stokes equations[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese). 董璐. 飞机抖振特性NS方程计算[D]. 南京: 南京航空航天大学, 2007.
[6] Yang Z C, Dang H X. Buffet onset prediction and flow field around a buffeting airfoil at transonic speeds, AIAA-2010-3051[R]. Reston: AIAA, 2010.
[7] Goncalves E, Houdeville R. Turbulence model and numerical scheme assessment for buffet computations[J]. International Journal for Numerical Methods in Fluids, 2004, 46(11): 1127-1152.
[8] Barakos G, Drikakis D. Numerical simulation of transonic buffet flows using various turbulence closures[J]. International Journal of Heat and Fluid Flow, 2000, 21(5): 620-626.
[9] Chung I, Lee D, Reu T. Prediction of transonic buffet onset for an airfoil with shock induced separation bubble using steady Navier-Stokes solver, AIAA-2002-2934[R]. Reston: AIAA, 2002.
[10] Xiao Q, Tsai H M, Liu F. Numerical study of transonic buffet on a supercritical airfoil[J]. AIAA Journal, 2006, 44(3): 620-628.
[11] Xiong J T, Liu Y, Liu F, et al. Multiple solutions and buffet of transonic flow over NACA0012 airfoil, AIAA-2013-3026[R]. Reston: AIAA, 2013.
[12] Rokoni A A, Hasan A T. Prediction of transonic buffet onset for flow over a supercritical airfoil—A numerical investigation[J]. Journal of Mechanical Engineering, 2013, 43(1): 48-53.
[13] Raghunathan S, Mabey D G. Passive shock-wave/boundary-layer control on a wall-mounted model[J]. AIAA Journal, 1987, 25(2): 275-278.
[14] Ogawa H, Babinsky H, Pätzold M, et al. Shock-wave/boundary-layer interaction control using three-dimensional bumps for transonic wings[J]. AIAA Journal, 2008, 46(6): 1442-1452.
[15] Tian Y, Liu P Q, Peng J. Using shock control bump to improve transonic buffet boundary of airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1421-1428 (in Chinese). 田云, 刘沛清, 彭健. 激波控制鼓包提高翼型跨声速抖振边界[J]. 航空学报, 2011, 32(8): 1421-1428.
[16] Huang J B, Xiao Z X, Liu J, et al. Simulation of shock wave buffet and its suppression on an OAT15A supercritical airfoil by IDDES[J]. Science China Physics, Mechanics and Astronomy, 2012, 55(2): 260-271.
[17] Caruana D, Mignosi A, Corrège M, et al. Buffet and buffeting control in transonic flow[J]. Aerospace Science and Technology, 2005, 9(7): 605-616.
[18] Zhou H. Numerical analysis of effect of mini-TED on aerodynamic characteristic of airfoils in transonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8):1367-1373 (in Chinese). 周华. Mini-TED改变翼型跨声速性能的数值分析[J]. 航空学报, 2009, 30(8): 1367-1373.
[19] Barbut G, Braza M, Hoarau Y, et al. Prediction of transonic buffet around a wing with flap[C]//Progress in Hybrid RANS-LES Modelling. Berlin: Springer, 2010: 191-204.
[20] Wang G, Jiang Y W, Ye Z Y. An improved LU-SGS implicit scheme for high Reynolds number flow computations on hybrid unstructured mesh[J]. Chinese Journal of Aeronautics, 2012, 25(1): 33-41.
[21] Jiang Y W. Numerical solution of Navier-Stokes equations on generalized mesh and its application[D]. Xi'an: Northwestern Polytechnical University, 2013 (in Chinese). 蒋跃文. 基于广义网格的CFD方法及其应用[D]. 西安: 西北工业大学, 2013.
[22] Zhang W W, Gao C Q, Ye Z Y. Research progress on mesh deformation method in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 303-319 (in Chinese). 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报, 2014, 35(2): 303-319.
[23] Soda A, Ralph V. Analysis of transonic aerodynamic interference in the wing-nacelle region for a generic transport aircraft[C]//The Proceedings of IFSAD 2005—International Forum on Aeroelasticity and Structural Dynamics. Munich: DLR, 2005. |