航空学报 > 2024, Vol. 45 Issue (9): 529084-529084   doi: 10.7527/S1000-6893.2023.29084

共轴刚性旋翼桨毂流动控制减阻研究

王畅1,2, 何龙2, 徐栋霞2(), 唐敏2, 马率5, 吴希明4   

  1. 1.清华大学 航天航空学院,北京 100084 2.中国空气动力研究与发展中心 低速空气动力研究所,绵阳 621000 3.北京航空航天大学 航空科学与工程学院,北京 100191 4.中国航空研究院,北京 100029
    5.中国空气动力研究与发展中心 计算空气动力研究所,绵阳 621000
  • 收稿日期:2023-05-30 修回日期:2023-08-07 接受日期:2023-11-13 出版日期:2024-05-15 发布日期:2024-02-02
  • 通讯作者: 徐栋霞 E-mail:dongxiaxu@163.com
  • 基金资助:
    省部级项目(221GJBJK0016)

Flow control drag reduction of hub on coaxial rigid rotor aircraft

Chang WANG1,2, Long HE2, Dongxia XU2(), Min TANG2, Shuai MA5, Ximing WU4   

  1. 1.School of Aerospace Engineering,Tsinghua University,Beijing 100084,China
    2.Low Speed Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China
    3.School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China
    4.Chinese Aeronautical Establishment,Beijing 100029,China
    5.Computational Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China
  • Received:2023-05-30 Revised:2023-08-07 Accepted:2023-11-13 Online:2024-05-15 Published:2024-02-02
  • Contact: Dongxia XU E-mail:dongxiaxu@163.com
  • Supported by:
    Provincial and Ministerial Level Project(221GJBJK0016)

摘要:

针对共轴刚性旋翼直升机在高速前飞时桨毂阻力在全机阻力中占比较大的问题,通过数值模拟和风洞试验对不带桨叶的桨毂模型的流动特性进行了研究,并对中间轴整流罩外形进行了优化,获得了较优的减阻效果。同时,根据桨毂优化外形方案和流场分析结果,引入吹气式主动流动控制策略,通过风洞试验研究了不同开缝方式、缝隙尺寸、射流角度和射流动量系数等参数对桨毂减阻效果的影响,验证了吹气式主动流动控制技术在共轴双桨毂减阻方面的可行性。研究结果表明:中间轴整流罩可显著减弱中间轴后部气流分离,可实现共轴刚性旋翼桨毂减阻,且HBF2构型的阻力面积较HBS构型减小了30.3%;旋转状态下桨毂模型带桨根时的阻力面积比不带桨根情况下的阻力面积大;吹气式主动流动控制技术能抑制中间轴整流罩后缘的气流分离,实现减阻功能,且斜线式射流方案的减阻效果优于直线式射流方案;采用斜线射流控制方式,且缝隙为1 mm、射流角度为30°、喷口射流动量系数为0.33时,桨毂阻力可在中间轴整流罩优化外形的基础上再减小13%,减阻效果最佳。

关键词: 共轴刚性旋翼, 桨毂阻力, 中间轴整流罩, 流动控制, 数值模拟, 风洞试验

Abstract:

In response to the issue that the hub drag accounts for a significant portion of the overall drag in the coaxial rigid rotor helicopter during high-speed forward flight, the flow mechanism of the hub model without blades is studied through numerical simulation and wind tunnel tests. The outer shape of the intermediate shaft fairing is optimized to achieve better drag reduction effects. Meanwhile,based on the optimized hub shape and flow field analysis results, an active flow control strategy with jet blowing is introduced, and its impact on hub drag reduction is investigated through wind tunnel tests using different slot configurations, gap sizes, jet angles, and jet momentum coefficients. The feasibility of using active flow control technology for hub drag reduction in coaxial dual-rotor hubs is demonstrated. The intermediate shaft fairing can effectively reduce the airflow separation at the rear of the intermediate shaft, achieving the goal of reducing the drag of the coaxial rigid rotor hub. The drag area of the HBF2 configuration is reduced by 30.3% compared to that of the HBS configuration. The drag area of the hub model with blade roots in rotation is larger than that without blade roots. The proposed active flow control technology can suppress the flow separation at the trailing edge of the intermediate shaft fairing to achieve drag reduction. The oblique jet configuration has a better drag reduction effect than the straight jet configuration. When using the oblique slot configuration with a gap size of 1 mm, jet angle of 30°, and jet momentum coefficient of 0.33, the hub drag can be further reduced by 13% compared to that based on the optimized intermediate shaft fairing shape, achieving the best drag reduction effect.

Key words: coaxial rigid rotor, hub drag, intermediate shaft fairing, flow control, numerical simulation, wind tunnel test

中图分类号: