1 |
吴希明. 高速直升机发展现状、趋势与对策[J]. 南京航空航天大学学报, 2015, 47(2): 173-179.
|
|
WU X M. Current status, development trend and countermeasure for high-speed rotorcraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 173-179 (in Chinese).
|
2 |
COLEMAN C P. A survey of theoretical and experimental coaxial rotor aerodynamic research: NASA-TP-3675[R]. Washington, D.C.: NASA,1997.
|
3 |
BAGAI A. Aerodynamic design of the X2 technology demonstrator main rotor blade[C]∥ Proceedings of 64th Annual Forum of the American Helicopter Society. Washington, D.C.: American Helicopter Society Inter-national, Inc., 2008: 29-44.
|
4 |
邓景辉. 高速直升机前行桨叶概念旋翼技术[J]. 航空科学技术, 2012, 23(3): 9-14.
|
|
DENG J H. The ABC rotor technology for high speed helicopter[J]. Aeronautical Science & Technology, 2012, 23(3): 9-14 (in Chinese).
|
5 |
朱正, 招启军, 李鹏. 悬停状态共轴刚性双旋翼非定常流动干扰机理[J]. 航空学报, 2016, 37(2): 568-578.
|
|
ZHU Z, ZHAO Q J, LI P. Unsteady flow interaction mechanism of coaxial rigid rotors in hover[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 568-578 (in Chinese).
|
6 |
卢丛玲, 祁浩天, 徐国华. 升力偏置对共轴刚性旋翼前飞气动特性的影响[J]. 航空学报, 2019, 40(11): 122906.
|
|
LU C L, QI H T, XU G H. Influence of lift offset on rigid coaxial rotor aerodynamic characteristics in forward flight[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 122906 (in Chinese).
|
7 |
吴希明. 共轴刚性旋翼空气动力学问题与研究进展[J]. 南京航空航天大学学报, 2019, 51(2): 137-146.
|
|
WU X M. Aerodynamic problems and research progresses of rigid coaxial rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 137-146 (in Chinese).
|
8 |
FELKER F F. An experimental investigation of hub drag on the XH-59A: AIAA-1985-4065[R]. Reston: AIAA, 1985.
|
9 |
YOUNG L A, GRAHAM D R, STROUB R H. Experimental investigation of rotorcraft hub and shaft fairing drag reduction[J]. Journal of Aircraft, 1987, 24(12): 861-867.
|
10 |
WAKE B E, HAGEN E, OCHS S S, et al. Assesment of helicopter hub drag prediction with an unstructured flow solver[C]∥ Proceedings of 65th Annual Forum of the American Helicopter Society. Washington, D.C.: American Helicopter Society International, Inc., 2009: 2422-2433.
|
11 |
BOTROS B, BOWLES P, MATALANIS C, et al. Numerical assessment of flow control technologies for coaxial high-speed rotorcraft[C]∥ AHS Technical Meeting on Aeromechanics Design for Vertical Lift. Washington, D.C.: American Helicopter Society International, Inc., 2016: 385-394.
|
12 |
龙海斌, 吴裕平, 朱仁淼. 共轴式双旋翼直升机桨毂减阻设计方法研究[J]. 直升机技术, 2017(2): 22-26.
|
|
LONG H B, WU Y P, ZHU R M. Study on drag reduction design method of coaxial twin rotor helicopter hub[J]. Helicopter Technique, 2017(2): 22-26 (in Chinese).
|
13 |
曾伟, 林永峰, 黄水林, 等. 共轴双旋翼桨毂减阻初步分析研究[J]. 直升机技术, 2014(4): 14-18.
|
|
ZENG W, LIN Y F, HUANG S L, et al. Preliminary analytical study on drag reduction of coaxial rotors hub[J]. Helicopter Technique, 2014(4): 14-18 (in Chinese).
|
14 |
何龙, 王畅, 唐敏, 等. 共轴刚性旋翼直升机桨毂阻力特性试验[J]. 南京航空航天大学学报, 2016, 48(4): 530-535.
|
|
HE L, WANG C, TANG M, et al. Drag characteristic test for hub of coaxial-rigid-rotor helicopter[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(4): 530-535 (in Chinese).
|
15 |
何龙. 高速直升机共轴双桨毂阻力特性研究[D]. 绵阳: 中国空气动力研究与发展中心, 2016.
|
|
HE L. Research on drags of coaxial hub high speed helicopter[D]. Mianyang: China Aerodynamics Research and Development Center, 2016 (in Chinese).
|
16 |
梁勇, 何龙, 王畅, 等. 共轴刚性旋翼桨毂阻力特性及流动机理[J]. 南京航空航天大学学报, 2019, 51(2): 171-177.
|
|
LIANG Y, HE L, WANG C, et al. Drag characteristics and flow mechanism for coaxial rigid rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 171-177 (in Chinese).
|
17 |
唐敏, 黄明其, 杨永东, 等. 共轴刚性旋翼桨毂阻力特性试验研究[J]. 南京航空航天大学学报, 2019, 51(2): 208-212.
|
|
TANG M, HUANG M Q, YANG Y D, et al. Experimental investigation of coaxial rotors hub drag characteristics[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 208-212 (in Chinese).
|
18 |
BOWLES P O, THOMAS M, MIN B Y, et al. Experimental investigation of passive and active flow control for X2 technologyTM hub and fuselage drag reduction[C]∥ Proceedings of 72nd Annual Forum of the American Helicopter Society. Washington, D.C.: American Helicopter Society International, Inc., 2016: 560-574.
|
19 |
马率, 王建涛, 邱名, 等. 涡桨飞机滑流影响的非定常数值模拟验证[J]. 空气动力学学报, 2019, 37(5): 804-812.
|
|
MA S, WANG J T, QIU M, et al. Unsteady numerical simulation verification of slipstream effect on turboprop[J]. Acta Aerodynamica Sinica, 2019, 37(5): 804-812 (in Chinese).
|
20 |
马率, 邱名, 王建涛, 等. CFD在螺旋桨飞机滑流影响研究中的应用[J]. 航空学报, 2019, 40(4): 622365.
|
|
MA S, QIU M, WANG J T, et al. Application of CFD in slipstream effect on propeller aircraft research[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 622365 (in Chinese).
|
21 |
何龙, 王畅, 唐敏, 等. 一种双旋翼同步反转装置: CN106441787B[P]. 2018-10-26.
|
|
HE L, WANG C, TANG M, et al. A dual-rotor synchronized reversing device: CN106441787B[P]. 2018-10-26 (in Chinese).
|
22 |
国防科学技术工业委员会. 高速风洞和低速风洞测力实验精度指标: [S]. 1991.
|
|
Commission of Science Technology and Industry for National Defense. Requirement for force-test precision of high and low speed wind tunnels: [S]. 1991 (in Chinese).
|
23 |
何龙, 李东, 徐栋霞, 等. 一种用于共轴刚性旋翼桨毂减阻的射流结构及其使用方法: CN113460299A[P]. 2021-10-01.
|
|
HE L, LI D, XU D X, et al. A jet structure and its usage method for drag reduction of coaxial rigid rotor hub: CN113460299A[P]. 2021-10-01 (in Chinese).
|