1 |
吴子牛, 白晨媛, 李娟, 等. 高超声速飞行器流动特征分析[J]. 航空学报, 2015, 36(1): 58-85.
|
|
WU Z N, BAI C Y, LI J, et al. Analysis of flow characteristics for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 58-85 (in Chinese).
|
2 |
BABINSKY H, HARVEY J. Shock wave-boundary-layer interactions[M]. Cambridge: Cambridge University Press, 2011.
|
3 |
罗振兵, 夏智勋, 王林. 高超声速飞行器内外流主动流动控制[M]. 北京: 科学出版社, 2019.
|
|
LUO Z B, XIA Z X, WANG L. Active flow control of internal and external flow in hypersonic vehicle[M]. Beijing: Science Press, 2019 (in Chinese).
|
4 |
杨基明, 李祝飞, 朱雨建. 高超声速流动中的激波及相互作用[M]. 北京: 国防工业出版社, 2019.
|
|
YANG J M, LI Z F, ZHU Y J. Shock waves and shock interactions in hypersonic flow[M]. Beijing: National Defense Industry Press, 2019 (in Chinese).
|
5 |
杨基明, 李祝飞, 朱雨建, 等. 激波的传播与干扰[J]. 力学进展, 2016, 46(1): 541-587.
|
|
YANG J M, LI Z F, ZHU Y J, et al. Shock wave propagation and interactions[J]. Advances in Mechanics, 2016, 46(1): 541-587 (in Chinese).
|
6 |
杨勇, 陈洪波. 高超声速再入飞行器IXV的研制与飞行试验[M]. 北京: 国防工业出版社, 2018.
|
|
YANG Y, CHEN H B. Development and flight test of the intermediate experimental vehicle[M]. Beijing: National Defense Industry Press, 2018 (in Chinese).
|
7 |
EGGERS T, DITTRICH R, VARVILL R. Numerical analysis of the SKYLON spaceplane in hypersonic flow: AIAA-2011-2298 [R]. Reston: AIAA, 2011.
|
8 |
EDNEY B E. Effects of shock impingement on the heat transfer around blunt bodies[J]. AIAA Journal, 1968, 6(1): 15-21.
|
9 |
OLEJNICZAK J, WRIGHT M J, CANDLER G V. Numerical study of inviscid shock interactions on double-wedge geometries[J]. Journal of Fluid Mechanics, 1997, 352: 1-25.
|
10 |
袁军娅, 任翔, 蔡国飙, 等. 双锥/双楔流动中的高温气体效应仿真模拟[J]. 气体物理, 2022, 7(4): 10-18.
|
|
YUAN J Y, REN X, CAI G B, et al. Simulation of high temperature gas effects in high enthalpy double cone/wedge flows[J]. Physics of Gases, 2022, 7(4): 10-18 (in Chinese).
|
11 |
檀姊静, 檀妹静, 付斌, 等. 高马赫数前缘激波-激波干扰[J]. 航空动力学报, 2023, 38(7): 1762-1772.
|
|
TAN Z J, TAN M J, FU B, et al. Shock-shock interactions of high Mach leading edge[J]. Journal of Aerospace Power, 2023, 38(7): 1762-1772 (in Chinese).
|
12 |
姜宝森, 张亮, 李俊红, 等. 吸气式飞行器进气道唇口三维激波/激波干扰[J]. 航空动力学报, 2019, 34(4): 821-828.
|
|
JIANG B S, ZHANG L, LI J H, et al. Three-dimensional shock/shock interaction of airbreathing vehicle’s inlet lip[J]. Journal of Aerospace Power, 2019, 34(4): 821-828 (in Chinese).
|
13 |
XIANG G X, WANG C, TENG H H, et al. Shock/shock interactions between bodies and wings[J]. Chinese Journal of Aeronautics, 2018, 31(2): 255-261.
|
14 |
SWANTEK A, AUSTIN J. Heat transfer on a double wedge geometry in hypervelocity air and nitrogen flows[C]∥ Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012.
|
15 |
KEYES J, HAINS F. Analytical and experimental studies of shock interference heating in hypersonic flows: NASA-TN-D-7139 [R]. Washington,D.C.: NASA Langley Research Center, 1973.
|
16 |
HOLDEN M, HARVEY J, WADHAMS T, et al. A review of experimental studies with the double cone and hollow cylinder/flare configurations in the LENS hypervelocity tunnels and comparisons with Navier-Stokes and DSMC computations[C]∥ Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010.
|
17 |
KNISELY A M. Experimental investigation of nonequilibrium and separation scaling in double-wedge and double-cone geometries[D]. Urbana-Champaign: University of Illinois, 2016.
|
18 |
KNIGHT D, CHAZOT O, AUSTIN J, et al. Assessment of predictive capabilities for aerodynamic heating in hypersonic flow[J]. Progress in Aerospace Sciences, 2017, 90: 39-53.
|
19 |
彭俊. 强激波相互作用及其极端热载荷诱发机制研究[D]. 北京: 中国科学院大学, 2021.
|
|
PENG J. Study on strong shock wave interaction and its induced mechanism of extreme thermal load[D]. Beijing: University of Chinese Academy of Sciences, 2021 (in Chinese).
|
20 |
熊文韬. 高温非平衡效应下双楔绕流中激波干扰研究[D]. 合肥: 中国科学技术大学, 2017.
|
|
XIONG W T. On shock-shock interaction in double-wedge flow with high temperature non-equilibrium effects[D]. Hefei: University of Science and Technology of China, 2017 (in Chinese).
|
21 |
LI J, ZHU Y J, LUO X S. On Type Ⅵ⁃Ⅴ transition in hypersonic double-wedge flows with thermo-chemical non-equilibrium effects[J]. Physics of Fluids, 2014, 26(8): 086104
|
22 |
TONG F L, DUAN J Y, LI X L. Shock wave and turbulent boundary layer interaction in a double compression ramp[J]. Computers & Fluids, 2021, 229: 105087.
|
23 |
田正雨, 李桦, 范晓樯. 六类高超声速激波-激波干扰的数值模拟研究[J]. 空气动力学学报, 2004, 22(3): 361-364.
|
|
TIAN Z Y, LI H, FAN X Q. Numerical investigation for six types of hypersonic turbulent shock-shock interaction[J]. Acta Aerodynamica Sinica, 2004, 22(3): 361-364 (in Chinese).
|
24 |
GAITONDE D V, ADLER M C. Dynamics of three-dimensional shock-wave/boundary-layer interactions[J]. Annual Review of Fluid Mechanics, 2023, 55: 291-321.
|
25 |
YANG H S, ZONG H H, LIANG H A, et al. Swept shock wave/boundary layer interaction control based on surface arc plasma[J]. Physics of Fluids, 2022, 34(8): 087119
|
26 |
时晓天, 吕蒙, 赵渊, 等. 激波/湍流边界层干扰的流动控制技术综述[J]. 航空学报, 2022, 43(1): 625929.
|
|
SHI X T, LYU M, ZHAO Y, et al. Flow control technique for shock wave/turbulent boundary layer interactions[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625929 (in Chinese).
|
27 |
范孝华, 唐志共, 王刚, 等. 激波/湍流边界层干扰低频非定常性研究评述[J]. 航空学报, 2022, 43(1): 625917.
|
|
FAN X H, TANG Z G, WANG G, et al. Review of low-frequency unsteadiness in shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625917 (in Chinese).
|
28 |
ALBERTSON C, VENKAT V. Shock interaction control for scramjet cowl leading edges: AIAA-23681-2199[R]. Reston: AIAA, 2005.
|
29 |
吴文堂, 洪延姬, 王殿恺, 等. 激光能量注入控制Ⅳ型激波干扰的数值研究[J]. 强激光与粒子束, 2014, 26(2): 50-55.
|
|
WU W T, HONG Y J, WANG D K, et al. Numerical investigation of type Ⅳ shock interaction controlled by laser energy deposition[J]. High Power Laser and Particle Beams, 2014, 26(2): 50-55 (in Chinese).
|
30 |
王殿恺, 洪延姬, 任玉新, 等. 高重频激光控制Ⅳ型激波干扰方法研究[J]. 推进技术, 2015, 36(10): 1459-1464.
|
|
WANG D K, HONG Y J, REN Y X, et al. Flow control method of type Ⅳ interaction with high rated laser energy[J]. Journal of Propulsion Technology, 2015, 36(10): 1459-1464 (in Chinese).
|
31 |
XIE W, LUO Z B, ZHOU Y, et al. Experimental study on shock wave control in high-enthalpy hypersonic flow by using SparkJet actuator[J]. Acta Astronautica, 2021, 188: 416-425.
|
32 |
TANG M X, WU Y, WANG H Y. Experimental investigation on hypersonic shock-shock interaction control using plasma actuator array[J]. Acta Astronautica, 2022, 198: 577-586.
|
33 |
KONG Y K, LI J, WU Y, et al. Experimental study on shock-shock interaction over doublewedge controlled by surface arc plasma array[J]. Contributions to Plasma Physics, 2022, 62(9): e202200062
|
34 |
张传标, 梁华, 郭善广, 等. 高能电弧等离子体激励控制双压缩拐角激波/边界层干扰实验研究[J]. 推进技术, 2022, 43(10): 213-228.
|
|
ZHANG C B, LIANG H, GUO S G, et al. Experimental study on double compression ramp shock wave/boundary layer interaction controlled by high-energy streamwise pulsed arc discharge array[J]. Journal of Propulsion Technology, 2022, 43(10): 213-228 (in Chinese).
|