收稿日期:
2023-09-25
修回日期:
2023-09-28
接受日期:
2023-10-08
出版日期:
2024-03-15
发布日期:
2023-10-13
通讯作者:
王红波
E-mail:whb0126@163.com
Guangjia LI, Hongbo WANG(), Kai ZHANG, Zhisheng YI
Received:
2023-09-25
Revised:
2023-09-28
Accepted:
2023-10-08
Online:
2024-03-15
Published:
2023-10-13
Contact:
Hongbo WANG
E-mail:whb0126@163.com
摘要:
临近空间太阳能无人机是介于航空器与航天器之间的特殊飞行器。受太阳能电池的光电转换效率和储能电池能量密度的约束,提升临近空间太阳能无人机气动效率和螺旋桨推进效率是保证该类型无人机平台任务执行能力、具备永久飞行能力的重要技术途径。然而低雷诺数效应给全机增升减阻技术攻关和节能降耗的设计目标带来了严重困难和挑战。针对这一问题,本文从翼型设计、气动布局设计、螺旋桨/机翼气动耦合设计、流动控制技术、螺旋桨增效设计5个方面调研了临近空间太阳能无人机增升减阻技术的研究现状,梳理了现有增升减阻措施的技术路线,分析了不同增升减阻方法的优势与不足,最后针对临近空间太阳能无人机增升减阻技术的发展趋势给出了建议。
中图分类号:
李广佳, 王红波, 张凯, 仪志胜. 临近空间太阳能无人机增升减阻技术综述[J]. 航空学报, 2024, 45(5): 529644-529644.
Guangjia LI, Hongbo WANG, Kai ZHANG, Zhisheng YI. Lift enhancement and drag reduction technologies of solar powered unmanned aerial vehicles in near space: Review[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529644-529644.
1 | 李锋,白鹏. 飞行器低雷诺数空气动力学[M]. 北京:中国宇航出版社, 2017:10-13. |
LI F, BAI P. Aerodyanamics of aircraft at low Reynolds number[M]. Beijing: China Aerospace Press, 2017:10-13 (in Chinese). | |
2 | LISSAMAN P S. Low-Reynolds-number airfoils[J]. Annual Review of Fluid Mechanics, 1983, 15: 223-239. |
3 | 左伟. 低雷诺数下机翼气动特性研究及控制[D]. 南京: 南京航空航天大学, 2016: 12-40. |
ZUO W. Research and control of aerodynamic characteristics of wing at low Reynolds number[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 12-40 (in Chinese) . | |
4 | MUELLER T J, BATILL S M. Experimental studies of separation on a two-dimensional airfoil at low Reynolds numbers[J]. AIAA Journal, 1982, 20(4): 457-463. |
5 | 白鹏, 崔尔杰, 李锋, 等. 对称翼型低雷诺数小攻角升力系数非线性现象研究[J]. 力学学报, 2006, 38(1): 1-8. |
BAI P, CUI E J, LI F, et al. Study of the nonlinear lift coefficient of the symmetrical airfoil at low Reynolds number near the 0° angle of attack[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 1-8 (in Chinese). | |
6 | 黄江涛, 刘刚, 高正红. 飞行器气动综合优化设计理论与方法[M]. 北京: 科学出版社, 2022: 58-164. |
HUANG J T, LIU G, GAO Z H. Theory and method of aerodynamic comprehensive optimization design of aircraft[M]. Beijing: Science Press, 2022: 58-164 (in Chinese). | |
7 | GOPALARATHNAM A, SELIG M. Low speed NLF airfoils -A case study in inverse airfoil design[C]∥ Proceedings of the 37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999. |
8 | 张维智, 贺德馨, 张兆顺. 低雷诺数高升力翼型的设计和实验研究[J]. 空气动力学学报, 1998, 16(3): 363-367. |
ZHANG W Z, HE D X, ZHANG Z S. The design and experiment study for a high airfoil at low Reynold numbers[J]. Acta Aerodynamica Sinica, 1998, 16(3): 363-367 (in Chinese). | |
9 | 孔繁美, 华俊, 向锦武, 等. 高升力与失速特性缓和的翼型设计研究[J]. 北京航空航天大学学报, 2002, 28(2): 235-237. |
KONG F M, HUA J, XIANG J W, et al. Design and research of high-lift mild-stall airfoils[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(2): 235-237 (in Chinese). | |
10 | 左林玄, 王晋军. 低雷诺数翼型的优化设计[J]. 兵工学报, 2009, 30(8): 1073-1077. |
ZUO L X, WANG J J. Airfoil design optimization at low Reynolds number[J]. Acta Armamentarii, 2009, 30(8): 1073-1077 (in Chinese). | |
11 | 张亚锋, 宋笔锋, 李占科. 高升力翼型的气动优化设计和实验研究[J]. 飞行力学, 2006, 24(4): 70-72. |
ZHANG Y F, SONG B F, LI Z K. Aerodynamic optimization design and experiment study for a high-lift airfoil[J]. Flight Dynamics, 2006, 24(4): 70-72 (in Chinese). | |
12 | 邓磊, 乔志德, 杨旭东, 等. 高升阻比自然层流翼型多点/多目标优化设计[J]. 空气动力学学报, 2011, 29(3): 330-335. |
DENG L, QIAO Z D, YANG X D, et al. Multi-point/objective optimization design of high lift-to-drag ratio for NLF airfoils[J]. Acta Aerodynamica Sinica, 2011, 29(3): 330-335 (in Chinese). | |
13 | 陈学孔, 郭正, 易凡, 等. 低雷诺数翼型的气动外形优化设计[J]. 空气动力学学报, 2014, 32(3): 300-307. |
CHEN X K, GUO Z, YI F, et al. Aerodynamic shape optimization and design of airfoils with low Reynolds number[J]. Acta Aerodynamica Sinica, 2014, 32(3): 300-307 (in Chinese). | |
14 | 李帝辰, 杨龙, 魏闯, 等. 低雷诺数翼型多点气动优化设计方法研究[J]. 航空科学技术, 2020, 31(12): 16-25. |
LI D C, YANG L, WEI C, et al. Study on multi-point aerodynamic optimization method of low Reynolds number airfoil[J]. Aeronautical Science & Technology, 2020, 31(12): 16-25 (in Chinese). | |
15 | SELIG M, MCGRANAHAN B. Wind tunnel aerodynamic tests of six airfoils for use on small wind turbines[C]∥ Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004. |
16 | PADULA S L, GUMBERT C R, LI W. Aerospace applications of optimization under uncertainty[J]. Optimization and Engineering, 2006, 7(3): 317-328. |
17 | 张庆, 薛榕融, 马浩统. 低雷诺数仿生分离流翼型气动特性初探[J]. 航空动力学报, 2022, 37(7): 1516-1527. |
ZHANG Q, XUE R R, MA H T. Preliminary study on aerodynamic characteristics of bionic separated flow airfoil with low Reynolds number[J]. Journal of Aerospace Power, 2022, 37(7): 1516-1527 (in Chinese). | |
18 | 张子良, 张明明. 仿生减阻翼型的气动性能[J]. 航空动力学报, 2021, 36(8): 1740-1748. |
ZHANG Z L, ZHANG M M. Aerodynamic performance for bionic drag-reducing airfoil[J]. Journal of Aerospace Power, 2021, 36(8): 1740-1748 (in Chinese). | |
19 | 关惠仁, 方斌, 刘文玺, 等. 低雷诺数下仿生翼型的动力特性数值模拟[J]. 舰船科学技术, 2022, 44(2): 18-23. |
GUAN H R, FANG B, LIU W X, et al. Numerical simulation research on dynamic characteristics of bionic airfoil under low Reynolds number[J]. Ship Science and Technology, 2022, 44(2): 18-23 (in Chinese). | |
20 | 陶真新, 李绍斌, 宋西镇. 低雷诺数下柔性翼型气动性能分析[J]. 力学与实践, 2017, 39(2): 145-151. |
TAO Z X, LI S B, SONG X Z. The aerodynamic performance of a flexible airfoil at low Reynolds number[J]. Mechanics in Engineering, 2017, 39(2): 145-151 (in Chinese). | |
21 | GIGUERE P, LEMAY J, DUMAS G. Gurney flap effects and scaling for low-speed airfoils[C]∥ Proceedings of the 13th Applied Aerodynamics Conference. Reston: AIAA, 1995. |
22 | STORMS B, JANG C. Lift enhancement of an airfoil using a Gurney flap and vortex generators[C]∥ Proceedings of the 31st Aerospace Sciences Meeting. Reston: AIAA, 1993. |
23 | BROWN L, FILIPPONE A. Aerofoil at low speeds with Gurney flaps[J]. The Aeronautical Journal, 2003, 107(1075): 539-546. |
24 | 崔钊, 李建波, 赵洪. 翼型加装格尼襟翼的低雷诺数气动特性实验研究[J]. 实验流体力学, 2013, 27(4): 1-6. |
CUI Z, LI J B, ZHAO H. Experimental study on aerodynamic characteristics of airfoil equipped with Gurney flaps at low Reynolds numbers[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4): 1-6 (in Chinese). | |
25 | 李亚臣, 王晋军. GURNEYFLAP增升研究综述[J]. 航空学报, 2000, 21(4): 380-382. |
LI Y C, WANG J J. Summary of GURNEYFLAP Ascension research[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(4): 380-382 (in Chinese). | |
26 | 石文, 李广佳, 仪志胜, 等. 临近空间太阳能无人机应用现状与展望[J]. 空天技术, 2022(1): 83-90. |
SHI W, LI G J, YI Z S, et al. Current status and prospect of solar-powered unmanned aerial vehicle application in near space[J]. Aerospace Technology, 2022(1): 83-90 (in Chinese). | |
27 | 苑轩. 我国首款大型太阳能无人机完成两万米高空飞行[J]. 中国航天, 2017(7): 33. |
YUAN X. China’s first large-scale solar drone completed 20, 000 meters high altitude flight[J]. Aerospace China, 2017(7): 33 (in Chinese). | |
28 | 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3): 623418. |
MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623418 (in Chinese). | |
29 | 阙建锋, 王维军, 吴宇. 利于减少配平损失的太阳能飞机构型设计[J]. 北京航空航天大学学报, 2016, 42(7): 1479-1485. |
QUE J F, WANG W J, WU Y. Design of solar-powered aircraft configuration for reducing trim loss[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7): 1479-1485 (in Chinese). | |
30 | 赵炜, 黄江流, 周洲, 等. 菱形翼布局太阳能无人机螺旋桨滑流影响研究[J]. 北京航空航天大学学报, 2020, 46(7): 1296-1306. |
ZHAO W, HUANG J L, ZHOU Z, et al. Effects of propeller slipstream on diamond joined-wing configuration solar-powered UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1296-1306 (in Chinese). | |
31 | SCHARPF D, MUELLER T. An experimental study of a closely coupled tandem wing configurationat low Reynolds numbers[C]∥ Proceedings of the Flight Simulation Technologies Conference and Exhibit. Reston: AIAA, 1990. |
32 | 李广佳, 李锋, 石文. 串置翼型数值模拟及气动特性分析[J]. 飞机设计, 2006, 26(1): 19-24. |
LI G J, LI F, SHI W. Numerical simulations of tandem-airfoil[J]. Aircraft Design, 2006, 26(1): 19-24 (in Chinese). | |
33 | 王红波, 祝小平, 周洲, 等. 太阳能无人机螺旋桨滑流气动特性分析[J]. 西北工业大学学报, 2015, 33(6): 913-920. |
WANG H B, ZHU X P, ZHOU Z, et al. Aerodynamic investigation on propeller slipstream flows for solar powered airplanes[J]. Journal of Northwestern Polytechnical University, 2015, 33(6): 913-920 (in Chinese). | |
34 | WU M J, SHI Z W, XIAO T H, et al. Energy optimization and investigation for Z-shaped Sun-tracking morphing-wing solar-powered UAV[J]. Aerospace Science and Technology, 2019, 91: 1-11. |
35 | 周伟, 马培洋, 郭正, 等. 基于翼尖链翼的组合固定翼无人机研究[J]. 航空学报, 2022, 43(9): 325946. |
ZHOU W, MA P Y, GUO Z, et al. Research on combined fixed-wing UAV based on wing tip chain wing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 325946 (in Chinese). | |
36 | KROO I. Propeller-wing integration for minimum induced loss[J]. Journal of Aircraft, 1986, 23(7): 561-565. |
37 | RAKSHITH B R, DESHPANDE S M, NARASIMHA R, et al. Optimal low-drag wing planforms for tractor-configuration propeller-driven aircraft[J]. Journal of Aircraft, 2015, 52(6): 1791-1801. |
38 | BORER N K, PATTERSON M D, VIKEN J K, et al. Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator[C]∥ 16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016. |
39 | STOLL A M, BEVIRT J, MOORE M D, et al. Drag reduction through distributed electric propulsion[C]∥ 14th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2014. |
40 | VELDHUIS L M. Propeller wing aerodynamic interference[D]. Delft: Delft University of Technology, 2005. |
41 | 杨伟, 范召林, 吴文华, 等. 考虑滑流影响的分布式螺旋桨布局优化设计[J]. 空气动力学学报, 2021, 39(3): 71-79. |
YANG W, FAN Z L, WU W H, et al. Optimal design of distributed propeller layout considering slipstream effect[J]. Acta Aerodynamica Sinica, 2021, 39(3): 71-79 (in Chinese). | |
42 | 王科雷, 周洲, 祝小平, 等. 低雷诺数多螺旋桨/机翼耦合气动设计[J]. 航空学报, 2018, 39(8): 121918. |
WANG K L, ZHOU Z, ZHU X P, et al. Multi-propeller/wing coupled aerodynamic design at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 121918 (in Chinese). | |
43 | WANG H B, GAN W B, LI D C. An investigation of the aerodynamic performance for a propeller-aided lift-enhancing double wing configuration[J]. Aerospace Science and Technology, 2020, 105: 105991. |
44 | 王红波. 基于动力诱导增升垂直起降气动设计研究[D]. 西安: 西北工业大学, 2018: 63-97. |
WANG H B. Aerodynamic design of vertical takeoff and landing based on dynamic induced lift[D].Xi'an: Northwestern Polytechnical University, 2018: 63-97 (in Chinese) . | |
45 | 石清. 机翼增升减阻的流动控制研究[D]. 长沙: 国防科技大学, 2017: 63-100. |
SHI Q. Study on flow control of wing lift and drag reduction[D].Changsha: National University of Defense Technology, 2017: 63-100 (in Chinese) . | |
46 | JIRÁSEK A. Vortex-generator model and its application to flow control[J]. Journal of Aircraft, 2004, 42: 1486-1491. |
47 | BRUNET V, FRANÇOIS C, GARNIER E, et al. Experimental and numerical investigations of vortex generators effects: AIAA-2006-3027 [R]. Reston:AIAA, 2006. |
48 | GODARD G, STANISLAS M. Control of a decelerating boundary layer. Part 1: Optimization of passive vortex generators[J]. Aerospace Science and Technology, 2006, 10(3): 181-191. |
49 | 张惠, 赵宗德, 周广鑫, 等. 涡发生器参数对风力机翼型性能影响实验研究[J]. 太阳能学报, 2017, 38(12): 3399-3405. |
ZHANG H, ZHAO Z D, ZHOU G X, et al. Experimental investigation of effect of vortex generator’s parameter on performance of wind turbine aerofoil[J]. Acta Energiae Solaris Sinica, 2017, 38(12): 3399-3405 (in Chinese). | |
50 | 宗昕. 大型飞机机翼增升减阻技术研究[D]. 南京: 南京航空航天大学, 2012: 41-59. |
ZONG X. Research on wing lift and drag reduction technology of large aircraft[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 41-59 (in Chinese). | |
51 | VELDHUIS L, VERVOORT E. Drag effect of a dented surface in a turbulent flow[C]∥ Proceedings of the 27th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2009. |
52 | BEVES C C, BARBER T J. Aerofoil flow separation suppression using dimples[J]. The Aeronautical Journal, 2011, 115(1168): 335-344. |
53 | 焦雪文, 张立茹, 牛佳佳, 等. 低雷诺数下凹坑结构对翼型层流分离影响的数值研究[J]. 可再生能源, 2021, 39(3): 346-352. |
JIAO X W, ZHANG L R, NIU J J, et al. Numerical study on the influence of dimples structure on airfoil laminar flow separation under low Reynolds number[J]. Renewable Energy Resources, 2021, 39(3): 346-352 (in Chinese). | |
54 | WAHIDI R, BRIDGES D H. Effects of distributed suction on an airfoil at low Reynolds number[J]. AIAA Journal, 2012, 50(3): 523-539. |
55 | 刘沛清, 马利川, 屈秋林, 等. 低雷诺数下翼型层流分离泡及吹吸气控制数值研究[J]. 空气动力学学报, 2013, 31(4): 518-524, 540. |
LIU P Q, MA L C, QU Q L, et al. Numerical investigation of the laminar separation bubble control by blowing/suction on an airfoil at low Re number[J]. Acta Aerodynamica Sinica, 2013, 31(4): 518-524, 540 (in Chinese). | |
56 | 邓雄, 赵志杰, 王秋旺, 等. 基于前缘合成双射流的飞翼布局纵向气动控制特性研究[J]. 空气动力学学报, 2022, 40(5): 79-90. |
DENG X, ZHAO Z J, WANG Q W, et al. Research on longitudinal aerodynamic control characteristics of flying wing based on leading-edge dual synthetic jets[J]. Acta Aerodynamica Sinica, 2022, 40(5): 79-90 (in Chinese). | |
57 | LIAN Y S, SHYY W, VIIERU D, et al. Membrane wing aerodynamics for micro air vehicles[J]. Progress in Aerospace Sciences, 2003, 39(6-7): 425-465. |
58 | 李冠雄, 马东立, 杨穆清, 等. 低雷诺数翼型局部振动非定常气动特性[J]. 航空学报, 2018, 39(1): 121427. |
LI G X, MA D L, YANG M Q, et al. Unsteady aerodynamic characteristics of airfoil with local oscillation at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 121427 (in Chinese). | |
59 | 娄斌. 低空太阳能无人机设计及增升减阻技术研究[D]. 杭州: 浙江大学, 2019: 72-94. |
LOU B. Design of low-altitude solar unmanned aerial vehicle and research on lift and drag reduction technology[D].Hangzhou: Zhejiang University, 2019: 72-94 (in Chinese). | |
60 | ZHA G C, PAXTON C. A novel airfoil circulation augment flow control method using co-flow jet[C]∥ 2nd AIAA Flow Control Conference. Reston: AIAA, 2004. |
61 | 张顺磊, 杨旭东, 宋笔锋, 等. 应用协同射流原理的旋翼翼型增升减阻试验研究[J]. 航空工程进展, 2021, 12(4): 44-51, 67. |
ZHANG S L, YANG X D, SONG B F, et al. Experimental investigation of lift enhancement and drag reduction of rotor airfoil using co-flow jet concept[J]. Advances in Aeronautical Science and Engineering, 2021, 12(4): 44-51, 67 (in Chinese). | |
62 | 宋超, 杨旭东, 朱敏, 等. 应用离散型协同射流的翼型增升减阻研究[J]. 西北工业大学学报, 2015, 33(2): 191-196. |
SONG C, YANG X D, ZHU M, et al. Investigating lift increase and drag reduction for airfoils using discrete CFJ(co-flow jet)[J]. Journal of Northwestern Polytechnical University, 2015, 33(2): 191-196 (in Chinese). | |
63 | 于金革, 牛中国, 梁华, 等. 等离子体用于飞翼布局模型增升减阻试验研究[J]. 空气动力学学报, 2015, 33(6): 823-827. |
YU J G, NIU Z G, LIANG H, et al. Experimental investigation on flying wing lift enhancement and drag reduction by plasma[J]. Acta Aerodynamica Sinica, 2015, 33(6): 823-827 (in Chinese). | |
64 | 阳鹏宇, 张鑫, 赖庆仁, 等. 机翼尺度效应对等离子体分离流动控制特性的影响[J]. 力学学报, 2021, 53(12): 3321-3330. |
YANG P Y, ZHANG X, LAI Q R, et al. Experimental investigation of the influence of scaling effects of wings on the flow separation control using plasma actuators[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3321-3330 (in Chinese). | |
65 | LARRABEE E. Practical design of minimum induced loss propellers[R]. 1979. |
66 | D’ANGELO S, BERARDI F, MINISCI E. Aerodynamic performances of propellers with parametric considerations on the optimal design[J]. The Aeronautical Journal, 2002, 106(1060): 313-320. |
67 | MORGADO J, ABDOLLAHZADEH M, SILVESTRE M A R, et al. High altitude propeller design and analysis[J]. Aerospace Science and Technology, 2015, 45: 398-407. |
68 | 项松, 王吉, 张利国, 等. 一种高效率螺旋桨设计方法[J]. 航空动力学报, 2015, 30(1): 136-141. |
XIANG S, WANG J, ZHANG L G, et al. A design method for high efficiency propeller[J]. Journal of Aerospace Power, 2015, 30(1): 136-141 (in Chinese). | |
69 | 梁撑刚, 郁新华, 龚军锋. 一种无人机螺旋桨的快速优化设计方法[J]. 航空计算技术, 2017, 47(2): 76-79. |
LIANG C G, YU X H, GONG J F. A quick approach to optimum design of UAV propeller[J]. Aeronautical Computing Technique, 2017, 47(2): 76-79 (in Chinese). | |
70 | 刘芳,杜绵银,岳良明. 高空低雷诺数高效螺旋桨设计[C]∥ 第三届中国航空科学技术大会,2017:15-21. |
LIU F, DU M Y, YUE L M. High efficiency propeller design at low Reynolds number and high altitude[C]∥The 3rd China Aeronautical Science and Technology Conference, 2017:15-21 (in Chinese). | |
71 | 刘坤澎,王海峰,江泓鑫,等. 螺旋桨多设计点气动优化方法和变桨距角策略[J]. 航空学报, 2023,40:doi:10.7527/S1000-6893.2023.28831. |
LIU K P, WANG H F, JIANG H X, et al. Aerodynamic optimization method of propeller multi-design points and variable pitch angle strategy[J]. Acta Aeronautica et Astronautica Sinica, 2023, 40:doi:10.7527/S1000-6893.2023.28831. | |
72 | WEI Y L, QIAN Y J, BIAN S Y, et al. Experimental study of the performance of a propeller with trailing-edge serrations[J]. Acoustics Australia, 2021, 49(2): 305-316. |
73 | 朱敏, 杨旭东, 宋超, 等. 应用协同射流控制的临近空间螺旋桨高增效方法[J]. 航空学报, 2014, 35(6): 1549-1559. |
ZHU M, YANG X D, SONG C, et al. High synergy method for near space propeller using co-flow jet control[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6): 1549-1559 (in Chinese). | |
74 | 李玉杰, 罗振兵, 邓雄, 等. 合成双射流控制NACA0015翼型大攻角流动分离试验研究[J]. 航空学报, 2016, 37(3): 817-825. |
LI Y J, LUO Z B, DENG X, et al. Experimental investigation on flow separation control of stalled NACA0015 airfoil using dual synthetic jet actuator[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 817-825 (in Chinese). | |
75 | 程钰锋, 李洪亮, 祝方正. 临近空间介质阻挡放电特性及其提高螺旋桨性能的数值分析[J]. 飞机设计, 2016, 36(5): 7-14. |
CHENG Y F, LI H L, ZHU F Z. Numerical study on the characteristics of the dielectric barrier discharge and plasma to enhance propeller characteristics in near space[J]. Aircraft Design, 2016, 36(5): 7-14 (in Chinese). |
[1] | 王海峰, 刘坤澎, 江泓鑫, 杜晨曦. 螺旋桨多设计点气动优化方法和变桨距角策略[J]. 航空学报, 2024, 45(9): 528831-528831. |
[2] | 杨晓飞, 孙太璐, 孟德君, 尹海宝, 王咏梅. 兼顾多模式的核心机驱动风扇级气动设计方法[J]. 航空学报, 2024, 45(2): 128625-128625. |
[3] | 高显忠, 邓小龙, 王玉杰, 郭正, 侯中喜. 临近空间太阳能飞机能量最优飞行航迹规划方法展望[J]. 航空学报, 2023, 44(8): 27265-027265. |
[4] | 邓小龙, 杨希祥, 朱炳杰, 麻震宇, 侯中喜. 智能平流层浮空器Loon关键技术分析与仿真[J]. 航空学报, 2023, 44(8): 127412-127412. |
[5] | 李春鹏, 钱战森, 孙侠生. 远程民机变弯度机翼后缘外形变形矩阵气动设计[J]. 航空学报, 2023, 44(7): 127335-127335. |
[6] | 李俊红, 靳旭红, 刘春风, 苗文博, 程晓丽. 临近空间高速飞行器微量气动力试验及计算[J]. 航空学报, 2023, 44(6): 127072-127072. |
[7] | 崔玉红, 徐艺哲, 吕凡熹, 赵飞, 张宇佳, 孙佳濛, 左光. 临近空间高超声速飞行器武器投放影响因素[J]. 航空学报, 2023, 44(24): 128539-128539. |
[8] | 张旭辉, 解春雷, 刘思佳, 闫溟, 邢思远. 智能变形飞行器发展需求及难点分析[J]. 航空学报, 2023, 44(21): 529302-529302. |
[9] | 王晓峰, 屈峰, 付俊杰, 王泽宇, 刘超宇, 白俊强. 基于离散伴随的高超内转式进气道气动优化设计[J]. 航空学报, 2023, 44(19): 128352-128352. |
[10] | 史智广, 杨玉洁, 左宗玉. 多囊体临近空间飞艇多要素耦合建模与仿真[J]. 航空学报, 2023, 44(16): 228451-228451. |
[11] | 孙佳濛, 左光, 徐艺哲, 杜若凡, 崔玉红. 临近空间高超声速飞行器武器投放方案数值模拟[J]. 航空学报, 2023, 44(13): 127808-127808. |
[12] | 陈文雪, 高长生, 荆武兴. 拦截机动目标的信赖域策略优化制导算法[J]. 航空学报, 2023, 44(11): 327596-327596. |
[13] | 李昊歌, 杨华, 杨雨欣, 陈伟芳. 高超声速升力体迎风面精细化降热优化设计[J]. 航空学报, 2022, 43(S2): 124-137. |
[14] | 林鹏, 庄福建, 曲林锋, 许阳阳, 苏亚东. 高超声速飞机尾喷管设计-制造与验证技术发展综述[J]. 航空学报, 2022, 43(6): 526160-526160. |
[15] | 薄钧天, 王国宏, 于洪波, 张翔宇. 临近空间高超声速多目标检测前跟踪算法[J]. 航空学报, 2022, 43(5): 325299-325299. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学