收稿日期:
2023-03-14
修回日期:
2023-04-11
接受日期:
2023-05-07
出版日期:
2024-02-15
发布日期:
2023-05-12
通讯作者:
曾宇
E-mail:whbwatch@nudt.edu.cn
基金资助:
Hongbo WANG, Yu ZENG(), Dapeng XIONG, Yixin YANG, Mingbo SUN
Received:
2023-03-14
Revised:
2023-04-11
Accepted:
2023-05-07
Online:
2024-02-15
Published:
2023-05-12
Contact:
Yu ZENG
E-mail:whbwatch@nudt.edu.cn
Supported by:
摘要:
由于缺乏对某些重要流动特征的考虑,针对不可压流发展的标准SST湍流模型在描述超声速流场时存在明显的局限性。为改善SST模型在吸气式高超声速推进系统内流等复杂超声速流场中的预测精度,基于流动特征结构定向开展了激波和可压缩效应改进。通过激波/湍流边界层判别函数和可压缩效应判别函数定位标准SST模型参数或建模假设失效的区域,针对性地改进湍流模型。采用超声速平板边界层流动、超声速压缩拐角分离流动、超声速隔离段复杂激波串流动以及HIFiRE-2超声速内流等算例进行了测试,结果表明改进模型具有与标准SST模型一致的边界层预测能力,但显著提高了对激波干扰流动及逆压分离流的预测精度。
中图分类号:
汪洪波, 曾宇, 熊大鹏, 杨揖心, 孙明波. SST湍流模型的激波与可压缩效应改进[J]. 航空学报, 2024, 45(3): 128694-128694.
Hongbo WANG, Yu ZENG, Dapeng XIONG, Yixin YANG, Mingbo SUN. Improvement of shock wave and compressibility effects in SST turbulence model[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 128694-128694.
1 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
2 | 阎超. 航空CFD四十年的成就与困境[J]. 航空学报, 2022, 43(10): 526490. |
YAN C. Achievements and predicaments of CFD in aeronautics in past forty years[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 526490 (in Chinese). | |
3 | URZAY J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics, 2018, 50: 593-627. |
4 | PENG Y P, BARZEGAR GERDROODBARY M, SHEIKHOLESLAMI M, et al. Mixing enhancement of the multi hydrogen fuel jets by the backward step[J]. Energy, 2020, 203: 117859. |
5 | 范孝华, 唐志共, 王刚, 等. 激波/湍流边界层干扰低频非定常性研究评述[J]. 航空学报, 2022, 43(1): 625917. |
FAN X H, TANG Z G, WANG G, et al. Review of low-frequency unsteadiness in shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625917 (in Chinese). | |
6 | YORK W D, WALTERS D K, LEYLEK J H. A simple and robust linear eddy-viscosity formulation for curved and rotating flows[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2009, 19(6): 745-776. |
7 | AILLAUD P, GICQUEL L Y M, DUCHAINE F. Investigation of the concave curvature effect for an impinging jet flow[J]. Physical Review Fluids, 2017, 2(11): 114608. |
8 | HUANG X B, YANG W, LI Y J, et al. Review on the sensitization of turbulence models to rotation/curvature and the application to rotating machinery[J]. Applied Mathematics and Computation, 2019, 341: 46-69. |
9 | BRADSHAW P. Turbulence modeling with application to turbomachinery[J]. Progress in Aerospace Sciences, 1996, 32(6): 575-624. |
10 | TU G H, DENG X G, MAO M L. Assessment of two turbulence models and some compressibility corrections for hypersonic compression corners by high-order difference schemes[J]. Chinese Journal of Aeronautics, 2012, 25(1): 25-32. |
11 | 甘文彪, 周洲, 许晓平, 等. 基于改进SST模型的分离流动数值模拟[J]. 推进技术, 2013, 34(5): 595-602. |
GAN W B, ZHOU Z, XU X P, et al. Investigation on improving the capability of predicting separation in modified SST turbulence model[J]. Journal of Propulsion Technology, 2013, 34(5): 595-602 (in Chinese). | |
12 | PICKLES J D, METTU B R, SUBBAREDDY P K, et al. On the mean structure of sharp-fin-induced shock wave/turbulent boundary layer interactions over a cylindrical surface[J]. Journal of Fluid Mechanics, 2019, 865: 212-246. |
13 | GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72: 80-99. |
14 | 童福林, 段俊亦, 周桂宇, 等. 激波/湍流边界层干扰压力脉动特性数值研究[J]. 力学学报, 2021, 53(7): 1829-1841. |
TONG F L, DUAN J Y, ZHOU G Y, et al. Statistical characteristics of pressure fluctuation in shock wave and turbulent boundary layer interaction[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1829-1841 (in Chinese). | |
15 | POPE S B. A more general effective-viscosity hypothesis[J]. Journal of Fluid Mechanics, 1975, 72(2): 331-340. |
16 | GATSKI T B, JONGEN T. Nonlinear eddy viscosity and algebraic stress models for solving complex turbulent flows[J]. Progress in Aerospace Sciences, 2000, 36(8): 655-682. |
17 | ENDO S, SUJISAKULVONG T, KUYA Y, et al. Laminar-turbulent transition modeling with a Reynolds stress model for anisotropic flow characteristics[C]∥AIAA SciTech 2020 Forum. Reston: AIAA, 2020. |
18 | BARROUILLET B, LAURENDEAU É, YANG H. Calibration of the transitional k⁃ω⁃γ-Reθt turbulence model[J]. AIAA Journal, 2022, 60(7): 4140-4148. |
19 | MANCEAU R, HANJALIĆ K. Elliptic blending model: A new near-wall Reynolds-stress turbulence closure[J]. Physics of Fluids, 2002, 14(2): 744-754. |
20 | BISWAS R, DURBIN P A, MEDIC G. Development of an elliptic blending lag k-ω [J]. International Journal of Heat and Fluid Flow, 2019, 76: 26-39. |
21 | SHANG W J, AGARWAL R K. Development and validation of an elliptic blending lag SST k⁃ω turbulence model[C]∥ Proceedings of the AIAA Aviation 2020 Forum. Reston: AIAA, 2020. |
22 | KAANDORP M L A, DWIGHT R P. Data-driven modelling of the Reynolds stress tensor using random forests with invariance[J]. Computers & Fluids, 2020, 202: 104497. |
23 | TAGHIZADEH S, WITHERDEN F D, GIRIMAJI S S. Turbulence closure modeling with data-driven techniques: Physical compatibility and consistency considerations[J]. New Journal of Physics, 2020, 22(9): 093023. |
24 | MENTER F, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer, 2003, 4(1): 625-632. |
25 | DURBIN P A. Some recent developments in turbulence closure modeling[J]. Annual Review of Fluid Mechanics, 2018, 50: 77-103. |
26 | 曾宇, 汪洪波, 孙明波, 等. SST湍流模型改进研究综述[J]. 航空学报, 2023, 44(9): 027411. |
ZENG Y, WANG H B, SUN M B, et al. SST turbulence model improvements: Review[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 027411 (in Chinese). | |
27 | RAJE P, SINHA K. Anisotropic SST turbulence model for shock-boundary layer interaction[J]. Computers & Fluids, 2021, 228: 105072. |
28 | DUAN L, BEEKMAN I, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number[J]. Journal of Fluid Mechanics, 2011, 672: 245-267. |
29 | SMITS A J, DUSSAUGE J P. Turbulent shear layers in supersonic flow[M]. 2nd ed. New York: Springer, 2006: 35-41. |
30 | 刘景源. SST湍流模型在高超声速绕流中的改进[J]. 航空学报, 2012, 33(12): 2192-2201. |
LIU J Y. An improved SST turbulence model for hypersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2192-2201 (in Chinese). | |
31 | SARKAR S. The pressure⁃dilatation correlation in compressible flows[J]. Physics of Fluids A: Fluid Dynamics, 1992, 4(12): 2674-2682. |
32 | ZEMAN O. Dilatation dissipation: The concept and application in modeling compressible mixing layers[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(2): 178-188. |
33 | WILCOX D C. Dilatation-dissipation corrections for advanced turbulence models[J]. AIAA Journal, 1992, 30(11): 2639-2646. |
34 | BROWN J. Turbulence model validation for hypersonic flows[C]∥ Proceedings of the 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston: AIAA, 2002. |
35 | MA G W, SUN M B, ZHAO G Y, et al. Effect of injection scheme on asymmetric phenomenon in rectangular and circular scramjets[J]. Chinese Journal of Aeronautics, 2023, 36(1): 216-230. |
36 | LIU M J, SUN M B, ZHAO G Y, et al. Effect of combustion mode on thrust performance in a symmetrical tandem-cavity scramjet combustor[J]. Aerospace Science and Technology, 2022, 130: 107904. |
37 | ZHANG C, DUAN L A, CHOUDHARI M M. Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers[J]. AIAA Journal, 2018, 56(11): 4297-4311. |
38 | RINGUETTE M J, BOOKEY P, WYCKHAM C, et al. Experimental study of a Mach 3 compression ramp interaction at Reθ = 2400[J]. AIAA Journal, 2009, 47(2): 373-385. |
39 | WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4): 879-889. |
40 | HOLDEN M S, WADHAMS T P, MACLEAN M G. Measurements in regions of shock wave/turbulent boundary layer interaction from Mach 4 to 10 for open and “Blind” code evaluation/validation[C]∥ Proceedings of the 21st AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2013. |
41 | LIOU W W, HUANG G, SHIH T H. Turbulence model assessment for shock wave/turbulent boundary-layer interaction in transonic and supersonic flows[J]. Computers & Fluids, 2000, 29(3): 275-299. |
42 | MARVIN J, BROWN J L, GNOFFO P. Experimental database with baseline CFD solutions: 2-D and axisymmetric hypersonic shock-wave/turbulent-boundary-layer interactions: NASA/TM-2013-216604[R]. Washington, D.C.: NASA, 2013. |
43 | DI STEFANO M A, HOSDER S, BAURLE R A. Effect of turbulence model uncertainty on scramjet isolator flowfield analysis[J]. Journal of Propulsion and Power, 2020, 36(1): 109-122. |
44 | MIDDLETON T F, BALLA R, BAURLE R, et al. The NASA Langley isolator dynamics research LAB[C]∥ Proceedings of the 31st Airbreathing Joint Meeting, 2010. |
45 | BAURLE R, MIDDLETON T F, WILSON L G. Reynolds-averaged turbulence model assessment for a highly back-pressured isolator flowfield[C]∥ 33rd Airbreathing Propulsion Joint Subcommittee Meeting, 2012. |
46 | TIAN Y F, ZHU J J, SUN M B, et al. Enhancement of blowout limit in a Mach 2.92 cavity-based scramjet combustor by a gliding arc discharge[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5697-5705. |
47 | STORCH A, BYNUM M, LIU J W, et al. Combustor operability and performance verification for HIFiRE flight 2[C]∥ Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011. |
48 | HASS N, CABELL K, STORCH A, et al. HIFiRE direct-connect rig (HDCR) phase I scramjet test results from the NASA Langley arc-heated scramjet test facility[C]∥ Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011. |
49 | JACKSON K, GRUBER M, BUCCELLATO S. HIFiRE flight 2 project overview and status update 2011[C]∥ Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011. |
50 | 王力军, 袁韦韦, 徐义俊, 等. 基于HIFiRE-2超燃发动机内流道的激波边界层干扰分析[J]. 航空发动机, 2020, 46(3): 14-19. |
WANG L J, YUAN W W, XU Y J, et al. Analysis of shock wave boundary layer interactions based on internal flowpath of HIFiRE-2 scramjet[J]. Aeroengine, 2020, 46(3): 14-19 (in Chinese). |
[1] | 吴文昌, 马燕凯, 韩省思, 闵耀兵, 燕振国. 一种光滑型TENO非线性加权的WCNS格式[J]. 航空学报, 2024, 45(8): 129052-129052. |
[2] | 谢玮, 罗振兵, 周岩, 刘强, 吴建军, 董昊. 高超声速双楔激波干扰定常射流控制试验研究[J]. 航空学报, 2024, 45(7): 128813-128813. |
[3] | 赖江, 范召林, 王乾, 董思卫, 童福林, 袁先旭. 高超声速有攻角锥裙直接数值模拟[J]. 航空学报, 2024, 45(2): 128610-128610. |
[4] | 熊有德, 李创创, 张振辉, 吴杰. 高超声速风洞自由来流扰动热线测量技术[J]. 航空学报, 2024, 45(10): 129042-129042. |
[5] | 张恺玲, 李思怡, 段毅, 阎超. 进气道流动中SST湍流模型参数的不确定度量化[J]. 航空学报, 2023, 44(S2): 729429-729429. |
[6] | 马平, 张宁, 石安华, 于哲峰, 梁世昌, 黄洁. 典型微波波段信号在模拟等离子体中的传输特性[J]. 航空学报, 2023, 44(S2): 729476-729476. |
[7] | 曾宇, 汪洪波, 孙明波, 王超, 刘旭. SST湍流模型改进研究综述[J]. 航空学报, 2023, 44(9): 27411-027411. |
[8] | 傅亚陆, 袁先旭, 刘朋欣, 余明. 可压缩壁湍流热力学量统计特性分析[J]. 航空学报, 2023, 44(9): 127217-127217. |
[9] | 马印锴, 李祝飞, 黄琪, 杨基明. 宽速域翼尖涡及其与斜激波相互作用[J]. 航空学报, 2023, 44(7): 38-50. |
[10] | 金毅, 孙姝, 郭赟杰, 谭慧俊, 张悦. 超声速可调进气道内流双解现象及其节流特性[J]. 航空学报, 2023, 44(7): 127134-127134. |
[11] | 刘为佳, 李映坤, 陈雄, 李春雷. 基于流固耦合的激波/边界层干扰作用下壁板颤振特性[J]. 航空学报, 2023, 44(6): 127085-127085. |
[12] | 张子佩, 赵钟, 陈坚强, 刘健, 邓小兵. 风雷软件LES开发设计与验证[J]. 航空学报, 2023, 44(6): 127171-127171. |
[13] | 许开龙, 刘再刚, 姜胜利, 王星, 张磐. 指定流量分配系数的多回流出口边界算法[J]. 航空学报, 2023, 44(5): 126830-126830. |
[14] | 魏皇生, 黄柱, 席光. 一种基于幅值和波数的耗散控制方法[J]. 航空学报, 2023, 44(4): 126589-126589. |
[15] | 朱博, 廖达雄, 陈振华, 陈吉明. 跨声速流场扰动模态与湍流度精细测量[J]. 航空学报, 2023, 44(4): 126378-126378. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学