1 |
GREEN J E. Interactions between shock waves and turbulent boundary layers[J]. Progress in Aerospace Sciences, 1970, 11: 235-340.
|
2 |
DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research: What next?[J]. AIAA Journal, 2001, 39: 1517-1531.
|
3 |
GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72: 80-99.
|
4 |
LIGRANI P M, MCNABB E S, COLLOPY H, et al. Recent investigations of shock wave effects and interactions[J]. Advances in Aerodynamics, 2020, 2: 4.
|
5 |
GAITONDE D V, ADLER M C. Dynamics of three-dimensional shock-wave/boundary-layer interactions[J]. Annual Review of Fluid Mechanics, 2023, 55: 291-321.
|
6 |
PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18(6): 065113.
|
7 |
PIROZZOLI S, BERNARDINI M. Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction[J]. AIAA Journal, 2011, 49(6): 1307-1312.
|
8 |
CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46(1): 469-492.
|
9 |
范孝华, 唐志共, 王刚, 等. 激波/湍流边界层干扰低频非定常性研究评述[J]. 航空学报, 2022, 43(1): 625917.
|
|
FAN X H, TANG Z G, WANG G, et al. Review of low-frequency unsteadiness in shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625917 (in Chinese).
|
10 |
FANG J, ZHELTOVODOV A A, YAO Y F, et al. On the turbulence amplification in shock-wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2020, 897: A32.
|
11 |
童福林, 董思卫, 段俊亦, 等. 激波/湍流边界层干扰分离泡直接数值模拟[J]. 航空学报, 2022, 43(3): 125437.
|
|
TONG F L, DONG S W, DUAN J Y, et al. Direct numerical simulation of shock wave/turbulent boundary layer interference separation bubble[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 125437 (in Chinese).
|
12 |
HOLDEN M. Database of aerothermal measurements in hypersonic flow “building block” experiments[C]∥Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
|
13 |
WRIGHT M J, SINHA K, OLEJNICZAK J, et al. Numerical and experimental investigation of double-cone shock interactions[J]. AIAA Journal, 2000, 38(12): 2268-2276.
|
14 |
NOMPELIS I, CANDLER G V, HOLDEN M S. Effect of vibrational nonequilibrium on hypersonic double-cone experiments[J]. AIAA Journal, 2003, 41(11): 2162-2169.
|
15 |
CANDLER G, NOMPELIS I, DRUGUET M C. Navier-Stokes predictions of hypersonic double-cone and cylinder-flare flow fields[C]∥Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001.
|
16 |
TUMUKLU O, THEOFILLS V, LEVIN D A. On the unsteadiness of shock-laminar boundary layer interactions of hypersonic flows over a double cone[J]. Physics of Fluids, 2018, 30(10): 106111.
|
17 |
HOLDEN M. Experimental studies of quasi-two-dimensional and three-dimensional viscous interaction regions induced by skewed-shock and swept-shock boundary layer interaction[C]∥ Proceedings of the 17th Fluid Dynamics, Plasma Dynamics, and Lasers Conference. Reston: AIAA, 1984.
|
18 |
HOLDEN M, HAVENER A, LEE C. Shock wave/turbulent boundary layer interaction in high-reynolds-number hypersonic flows[C]∥ Proceedings of the 10th Aerospace Sciences Meeting. Reston: AIAA, 1987.
|
19 |
冈敦殿. 超声速平板突起物及双锥绕流实验研究[D]. 长沙: 国防科学技术大学, 2013: 43-61.
|
|
GANG D D. Experimental study on supersonic flat plate protrusion and double cone flow[D].Changsha: National University of Defense Technology, 2013: 43-61. (in Chinese)
|
20 |
RUNNING C L, JULIANO T J, JEWELL J S, et al. Hypersonic shock-wave/boundary-layer interactions on a cone/flare model[C]∥Proceedings of the 2018 Fluid Dynamics Conference. Reston: AIAA, 2018.
|
21 |
RUNNING C L, JULIANO T J, JEWELL J S, et al. Hypersonic shock-wave/boundary-layer interactions on a cone/flare[J]. Experimental Thermal and Fluid Science, 2019, 109: 109911.
|
22 |
RUNNING C L, JULIANO T J, BORG M P, et al. Characterization of post-shock thermal striations on a cone/flare[J]. AIAA Journal, 2020, 58(5): 2352-2358.
|
23 |
RUNNING C L, JULIANO T J. Global measurements of hypersonic shock-wave/boundary-layer interactions with pressure-sensitive paint[J]. Experiments in Fluids, 2021, 62(5): 91.
|
24 |
SHIPLYUK A N. Experimental investigation of stability of a hypersonic boundary layer on a cone-flare model[J]. Journal of Applied Mechanics and Technical Physics, 2001, 42(4): 589-595.
|
25 |
BEDAREV I A, MASLOV A A, SIDORENKO A A, et al. Experimental and numerical study of a hypersonic separated flow in the vicinity of a cone-flare model[J]. Journal of Applied Mechanics and Technical Physics, 2002, 43(6): 867-876.
|
26 |
FRAYSSINET O. Numerical analysis of a separated flow on a supersonic cone flare model[C]∥Proceedings of the 34th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2016.
|
27 |
TONG F L, DUAN J Y, LAI J, et al. Hypersonic shock wave and turbulent boundary layer interaction in a sharp cone/flare model[J]. Chinese Journal of Aeronautics, 2022, 36(3): 80-95.
|
28 |
SIVASUBRAMANIAN J, FASEL H F. Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: fundamental breakdown[J]. Journal of Fluid Mechanics, 2015, 768: 175-218.
|
29 |
HUANG J J, DUAN L, CASPER K M, et al. Direct numerical simulation of turbulent pressure fluctuations over a cone at Mach 8[C]∥Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
|
30 |
PIROZZOLI S, GRASSO F, GATSKI T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids, 2004, 16(3): 530-545.
|
31 |
MARTÍN M P, TAYLOR E M, WU M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220(1): 270-289.
|
32 |
WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4): 879-889.
|
33 |
POINSOT T J. Boundary conditions for direct simulations of compressible viscous flows[J]. Journal of Computational Physics, 1992, 101: 101-129.
|
34 |
BACK L H, CUFFEL R F. Changes in heat transfer from turbulent boundary layers interacting with shock waves and expansion waves[J]. AIAA Journal, 1970, 8(10): 1871-1873.
|
35 |
ROY C J, BLOTTNER F G. Review and assessment of turbulence models for hypersonic flows[J]. Progress in Aerospace Sciences, 2006, 42(7-8): 469-530.
|
36 |
MURRAY N, HILLIER R, WILLIAMS S. Experimental investigation of axisymmetric hypersonic shock-wave/turbulent-boundary-layer interactions[J]. Journal of Fluid Mechanics, 2013, 714: 152-189.
|
37 |
PRIEBE S, MARTÍN M. Turbulence in a hypersonic compression ramp flow[J]. Physical Review Fluids, 2021, 6(3): 034601.
|
38 |
LOGINOV M S, ADAMS N A, ZHELTOVODOV A A. Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction[J]. Journal of Fluid Mechanics, 2006, 565: 135.
|
39 |
A-M SCHREYER, SAHOO D, WILLIAMAS O J H, et al. Experimental investigation of two hypersonic shock/turbulent boundary-layer interactions[J]. AIAA Journal, 2018, 56(12): 4830-4844.
|
40 |
PIROZZOLI S, BERNARDINI M, GRASSO F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer[J]. Journal of Fluid Mechanics, 2008, 613: 205-231.
|
41 |
LUMLEY J L. Computational modeling of turbulent flows[M]∥Advances in Applied Mechanics. Amsterdam: Elsevier, 1979: 123-176.
|