航空学报 > 2023, Vol. 44 Issue (S2): 729424-729424   doi: 10.7527/S1000-6893.2023.29424

激光能量沉积对超声速进气道流动的控制效果

王旺(), 饶彩燕, 徐聪, 李思怡, 段毅, 张健   

  1. 中国运载火箭技术研究院 空间物理重点实验室,北京 100076
  • 收稿日期:2023-08-09 修回日期:2023-08-14 接受日期:2023-09-27 出版日期:2023-10-17 发布日期:2023-10-13
  • 通讯作者: 王旺 E-mail:510579934@qq.com
  • 基金资助:
    国家自然科学基金(U21B6003)

Control effect of laser energy deposition on supersonic inlet flow

Wang WANG(), Caiyan RAO, Cong XU, Siyi LI, Yi DUAN, Jian ZHANG   

  1. Science and Technology on Space Physics Laboratory,China Academy of Launch Vehicle Technology,Beijing 100076,China
  • Received:2023-08-09 Revised:2023-08-14 Accepted:2023-09-27 Online:2023-10-17 Published:2023-10-13
  • Contact: Wang WANG E-mail:510579934@qq.com
  • Supported by:
    National Natural Science Foundation of China(U21B6003)

摘要:

为了寻求有效的流动控制方法来提升进气道捕获流量,基于非定常雷诺平均的Navier-Stokes方程,探究不同激光激励形式(单脉冲激光、连续、高重频激光)对二元式进气道的控制过程及流场参数的影响。在来流马赫数为7的GK-01二元式进气道上游,加入激光能量沉积,对比激励流场与基础流场。结果表明:能量沉积主要通过高温热核和其诱导的压力波这2种方式对进气道内流场结构施加作用,减小进气道内分离区,提升捕获流量,改善进气道内流动状态。具体控制作用过程包括:能量沉积诱导的压力波与斜激波相互作用,能量沉积局部高温高压作用使得进气道入口气流流动方向发生偏折,原流出进气道的部分气流受压力影响流入进气道内,造成进气道捕获流量增加;能量沉积及压力波传播至进气道内流场区域,能量沉积产生的压力波与进气道入口的分离区相互作用,原进气道入口的低能分离区逐渐减小,进气道捕获流量增大。

关键词: 流动控制, 能量沉积, 进气道, 捕获流量, 分离

Abstract:

To seek an effective flow control method to improve the flow rate captured by the inlet, this paper explores the effect of different laser excitation forms (including single laser pulse, continuous laser pulse, high repetition frequency laser pulse) on the dual inlet based on the unsteady Reynolds-averaged Navier-Stokes equations. The control process and the influence of the flow field parameters are studied. In the upstream of the GK-01 dual inlet with Mach number of 7, laser energy deposition is added, and the excitation flow field and the basic flow field are compared. The results show that the energy deposition acts on the flow field structure in the inlet mainly through the high temperature heat core and its induced pressure waves, reducing the separation area in the inlet, increasing the mass flow, and improving the flow state in the inlet. The specific control process includes two aspects. First, the pressure wave induced by the energy deposition interacts with the oblique shock wave. The local high temperature and high pressure of the energy deposition causes deflection of the inlet airflow, and part of the airflow that originally flows out of the inlet is affected by the pressure and flows into the inlet, thus increasing the mass flow rate of the inlet. Second, the energy deposition and pressure waves propagate to the flow field area in the inlet, and the pressure waves generated by the energy deposition interacts with the separation area of the inlet, leading to the gradual decrease of the low-energy separation zone and the increase of the inlet mass flow.

Key words: flow control, energy deposition, inlet, captured flow rate, separation

中图分类号: