[1] Anderson W K, Venkatakrishnan V. Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation, AIAA-1997-0643[R]. Reston: AIAA,1997.
[2] Burgreen G W, Baysal O. Three-dimensional aerodynamic shape optimiza-tion of wings using sensitivity analysis, AIAA-1994-0094[R]. Reston: AIAA, 1994.
[3] Elliot J, Peraire J. Aerodynamic design using unstructured meshes, AIAA-1996-1941[R]. Reston: AIAA,1996.
[4] Gill P E, Murray W, Wright M H. Practical optimization[M]. Vol. 5. London: Academic Press Inc., 1981: 127.
[5] Lyness J N, Moler C B. Numerical differentiation of analytic functions[J]. SIAM Journal on Numerical Analysis, 1967, 4(2): 202-210.
[6] Lyness J N. Numerical algorithms based on the theory of complex variable[C]//Rosenthal S. Proceedings of the 1967 22nd National Conference. New York: ACM, 1967: 125-133.
[7] Li B, Deng Y Q, Tang J L, et al. Discrete adjoint optimization method for 3D unstructured grid[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 674-686 (in Chinese). 李彬, 邓有奇, 唐静吕, 等. 基于三维非结构混合网格的离散伴随优化方法[J]. 航空学报, 2014, 35(3): 674-686.
[8] Li B, Tang J, Deng Y Q, et al. Application of parallel multigrid algorithm to discrete adjoint optimization[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8): 2091-2101 (in Chinese). 李彬, 唐静, 邓有奇, 等. 并行的多重网格方法在离散伴随优化中的应用[J]. 航空学报, 2014, 35(8): 2091-2101.
[9] Kahrimanian H G. Analytical differentiation by a digital computer[D]. Philadelphia: Temple University, 1953.
[10] Nolan J F. Analytical differentiation on a digital computer[D]. Massachusetts: Massachusetts Institute of Technology, 1953.
[11] Rall L B, Corliss G F. An introduction to automatic differentiation[M]. Berz M, Bischof C H, Corliss G F, et al. Computational Differentiation: Techniques, Applications, and Tools. Philadelphia: SIAM, 1996: 1-17.
[12] Zuo Y T, Su W, Gao Z H, et al. Aerodynamic configuration optimization design of hypersonic missile based on discrete adjoint method[J]. Chinese Journal of Computational Mechanics, 2012, 29(2): 284-289 (in Chinese). 左英桃, 苏伟, 高正红, 等. 基于离散共轭方法的高超声速导弹气动外形优化设计[J]. 计算力学学报, 2012, 29(2): 284-289.
[13] Lesoinne M, Sarkis M, Hetmaniuk U, et al. A linearized method for the frequency analysis of three-dimensional fluid/structure interaction problems in all flow regimes[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(24-25): 3121-3146.
[14] Hascoet L, Pascual V. The Tapenade automatic differen-tiation tool: principles, model, and specification[J]. ACM Transactions on Mathematical Software, 2013, 39(3): 1-20.
[15] Balay S, Adams M F, Brown J, et al. PETSc web page[EB/OL]. Chicago: Argonne National Laboratory, 2014. [2014-12-22]. http://www.mcs.anl.gov/petsc.
[16] Balay S, Adams M F, Brown J, et al. PETSc users manual, ANL-95/11 - Revision 3.4[EB/OL]. Chicago: Argonne National Laboratory [2014-12-22]. http://www. mcs. anl. gov/petsc.
[17] Balay S, Gropp W D, McInnes L C, et al. Efficient management of parallelism in object oriented numerical software libraries[C]//Arge E, Bruaset A M, Langtangen H P. Modern Software Tools in Scientific Computing. Basel: Birkhäuser Press, 1997:163-202.
[18] Falgout R D, Yang U M. Hypre: A library of high performance preconditioners[M]//Sloot P M A, Hoekstra A G, Tan C J K, et al. Computational Science—ICCS 2002. Berlin: Springer Berlin Heidelberg, 2002: 632-641.
[19] Davis T A. Algorithm 832: UMFPACK V43---an unsymmetric-pattern multifrontal method[J]. ACM Transactions on Mathematical Software (TOMS), 2004, 30(2): 196-199.
[20] Li X S. An Overview of SuperLU: algorithms, implementation, and user interface[J]. ACM Transactions on Mathematical Software, 2005, 31(3): 302-325.
[21] Xu J, Qu K, Cai J S. Flow simulations for NASA CRM wing-body-tail with implicit hole cutting method[J]. Applied Mechanics and Materials, 2013, 378: 355-361.
[22] Xu J, Liu Q, Cai J. Numerical simulations for DLR-F6 wing/body/nacelle/pylon with enhanced implicit hole cutting method[J]. Parallel Computational Fluid Dynamics Communications in Computer and Information Science, 2014, 405: 185-194.
[23] Chen S Y, Chen Y C, Xia Z H, et al. Constrained large-eddy simulation and detached eddy simulation of flow past a commercial aircraft at 14 degrees angle of attack[J]. Science China Physics, Mechanics and Astron-Omy, 2013, 56(2): 270-276.
[24] Landon R H. NACA0012, Oscillatory and transient pitching, compendium of unsteady aerodynamics measurements, AGARD-R-702[R]. Neuilly sur Seine (France): AGARD, 1982.
[25] Thomas J P, Dowell E H, Hall K C. Three-dimensional transonic aeroelasticity using proper orthogonal decom-position-based reduced-order models[J]. Journal of Air-craft, 2003, 40(3): 544-551.
[26] Yates Jr E C. AGARD standard aeroelastic configura-tions for dynamic response. Candidate configuration I.-wing 445.6, Technical Report NASA-TM-100492[R]. Hampton, VA: NASA Langley Research Center, 1987.
[27] Yates Jr E C. AGARD standard aeroelastic configura-tions for dynamic response I-wing 445.6, AGARD-R-765[R]. Neuilly sur Seine (France): AGARD, 1988.
[28] Liu F, Cai J, Zhu Y, et al. Calculation of wing flutter by a coupled fluid-structure method[J]. Journal of Aircraft, 2001, 38(2): 334-342.
[29] Silva W A. Simultaneous excitation of multiple-input/multiple-output CFD-Based unsteady aeroelastic systems[J]. Journal of Aircraft, 2008, 45(4): 1267-1274. |