[1] Wang X P. Application of genetic algorithm in aerodynamic shape optimization design[D]. Xi'an:Northwestern Polytechnical University, 2000 (in Chinese). 王晓鹏. 遗传算法及其在气动优化设计中的应用研究[D]. 西安: 西北工业大学, 2000.
[2] Sun M J, Zhan H. Synthesis airfoil optimization by particle swarm optimization based on global inforation[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2166-2173 (in Chinese). 孙美建, 詹浩. 基于全局信息的粒子群算法翼型综合优化设计[J]. 航空学报, 2010, 31(11): 2166-2173.
[3] Li D, Xia L. Application of improved particle swarm optimization algorithm to aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1809-1816 (in Chinese). 李丁, 夏露. 改进的粒子群优化算法在气动设计中的应用[J]. 航空学报, 2012, 33(10): 1809-1816.
[4] Xiong J T, Qiao Z D, Yang X D, et al. Optimum aerodynamic design of transonic wing based on viscous adjoint method[J]. Acta Aeronautica et Astronautica Sinica,2007, 28(2): 281-285 (in Chinese). 熊俊涛, 乔志德, 杨旭东, 等. 基于黏性伴随方法的跨声速机翼气动优化设计[J]. 航空学报, 2007, 28(2): 281-285.
[5] Nocedal J, Wright S J. Numerical optimization[M]. New York: Springer, 1999: 526-572.
[6] Jameson A, Pierce N A, Martinelli L. Optimum aerodynamic design using the Navier-Stokes equations, AIAA-1997-0101[R]. Reston: AIAA, 1997.
[7] Jameson A. Optimum aerodynamic design using CFD and control theory, AIAA-1995-1729[R]. Reston: AIAA, 1995.
[8] Reuther J, Jameson A, Farmer J, et al. Aerodynamic shape optimization of complex aircraft configurations via an adjoint method, AIAA-1996-0094[R]. Reston: AIAA, 1996.
[9] Carrier G, Destarac D, Dumont A, et al. Gradient-based aerodynamic optimization with the elsA software, AIAA-2014-0568[R]. Reston: AIAA, 2014.
[10] Martín M, Andrés E, Wildham M, et al. CAD-based aerodynamic shape design optimization with the DLR tau code[C]//27th International Congress of the Aeronautical Sciences, 2010.
[11] Nielsen E J, Diskin B, Yamaleev N K. Discrete adjoint-based design optimization of unsteady turbulent flows on dynamic unstructured grids[J]. AIAA Journal, 2010, 48(6): 1195-1206.
[12] Palacios F,Economon T. Stanford University unstructured (SU2): Open-source analysis and design technology for turbulent flows, AIAA-2014-0243[R]. Reston: AIAA, 2014.
[13] Zuo Y T, Gao Z H, He J. Aerodynamic design method based on N-S equations and discrete adjoint approach[J]. Acta Aerodynamica Sinica, 2010, 28(5): 509-512 (in Chinese). 左英桃, 高正红, 何俊. 基于 NS 方程和离散共轭方法的气动外形设计[J]. 空气动力学学报, 2010, 28(5): 509-512.
[14] Yang X D, Qiao Z D, Zhu B. Aerodynamic design method based on control theory and Navier-Stokes equations[J]. Acta Aerodynamica Sinica, 2005, 23(1): 46-52 (in Chinese). 杨旭东, 乔志德, 朱兵. 基于控制理论和 NS 方程的气动设计方法研究[J]. 空气动力学学报, 2005, 23(1): 46-52.
[15] Tang Z L. Constrained optimum control theory: application to aerodynamic design[J]. Chinese Journal of Theoretical and Applied Mechnics, 2007, 23(2): 273-277 (in Chinese). 唐智礼. 约束最优控制理论及其在气动优化中的应用[J]. 力学学报, 2007, 23(2): 273-277.
[16] Wu W H, Tao Y, Chen D H. Wing optimization of large airplane by adjoint method[J]. Journal of Aerospace Power, 2011, 26(7): 1583-1589 (in Chinese). 吴文华, 陶洋, 陈德华. 基于伴随算子的气动布局优化技术及其在大飞机机翼减阻中的应用[J]. 航空动力学报, 2011, 26(7): 1583-1589.
[17] Wu W H, Fan Z L, Chen D H. Adjoint based on high precise aerodynamic shape optimization for transonic civil aircraft[J]. Acta Aerodynamica Sinica, 2012, 30(6): 719-724 (in Chinese). 吴文华, 范召林, 陈德华. 基于伴随算子的大飞机气动布局精细优化设计[J]. 空气动力学学报, 2012, 30(6): 719-724.
[18] Sederberg T, Parry S. Free-form deformation of solid geometric models[C]//Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. 1986, 86: 151-160.
[19] Palacios F, Alonso J J, Colono M, et al. Adjoint-based method for supersonic aircraft design using equivalent area distribution, AIAA-2012-0269[R]. Reston: AIAA, 2012.
[20] Huang J T, Gao Z H, Bai J Q, et al. Laminar airfoil aerodynamic optimization design based on Delaunay graph mapping and FFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1817-1826 (in Chinese). 黄江涛, 高正红, 白俊强, 等. 应用Delaunay图映射与FFD技术的层流翼型气动优化设计[J]. 航空学报, 2012, 33(10): 1817-1826.
[21] Ma X Y,Wu W H,Fan Z L. Free deformation of wing based on NURBS[J]. Journal of Sichuan University: Engineering Science Edition, 2010, 42(2): 195-197 (in Chinese). 马晓永, 吴文华, 范召林. 基于NURBS的机翼自由变形方法[J]. 四川大学学报: 工程科学版, 2010, 42(2): 195-197.
[22] Spekreijse S P, Prananta B B, Kok J C. A simple, robust and fast algorithm to compute deformations of multi-block structured grids, NLR-TP-2002-105[R]. Amsterdam: National Aerospace Laboratory, 2002.
[23] Barthelemy J F M, Hall L E. Automatic differentiation as a tool in engineering design[J]. Structural Optimization, 1995, 9(2): 76-82.
[24] Hascoet L, Pascual V. The Tapenade automatic differentiation tool: principles, model, and specification[J]. ACM Transactions on Mathematical Software (TOMS), 2013, 39(3): 20.
[25] Saad Y. Iterative methods for sparse linear systems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2003.
[26] Heroux M A, Bartlett R A, Howle V E, et al. An overview of the Trilinos project[J]. ACM Transactions on Mathematical Software (TOMS), 2005, 31(3): 397-423.
[27] Chen S, Bai J Q, Sun Z W, et al. Aerodynamic optimization design of airfoil using DFFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 695-705 (in Chinese). 陈颂, 白俊强, 孙智伟, 等. 基于DFFD技术的翼型气动外形优化设计[J]. 航空学报, 2014, 35(3): 695-705.
[28] Yang T H, Bai J Q, Wang D, et al. Aerodynamic optimization design for after-body of tail-mounted engine layout considering interference of engines[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1836-1844 (in Chinese). 杨体浩, 白俊强, 王丹, 等. 考虑发动机干扰的尾吊布局后体气动优化设计[J]. 航空学报, 2014, 35(7): 1836-1844.
[29] Xu J K, Bai J Q, Huang J T, et al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 2910-2920 (in Chinese). 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报, 2014, 35(11): 2910-2920.
[30] Vassberg J C, DeHaan M A, Rivers S M, et al. Development of a common research model for applied CFD validation studies, AIAA-2008-6919[R]. Reston: AIAA, 2008. |