[1] GOURDAIN N, SICOT F, DUCHAINE F, et al. Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035 [J]. Philos Trans A Math Phys Eng Sci, 2014, 372(2022): 20130323.[2] 王志坚. 基于高阶方法的工业大涡模拟进展[J]. 空气动力学学报, 2021,39(01): 111-124.WANG Z J. Progress in high-order methods for industrial large eddy simulation. ACTA Aerodynamica Sinica, 2021, 39(01): 111-124.[3] LADEINDE F, CAI X D, VISBAL M R, et al. Turbulence spectra characteristics of high order schemes for direct and large eddy simulation [J]. Appl Numer Math, 2001, 36(4): 447-74.[4] LIU X D, OSHER S, CHAN T. Weighted Essentially Non-oscillatory Schemes [J]. J Comput Phys, 1994, 115(1): 200-12.[5] JIANG G S, SHU C W. Efficient Implementation of Weighted ENO Schemes [J]. J Comput Phys, 1996, 126(1): 202-28.[6] 李新亮. 高超声速湍流直接数值模拟技术 [J]. 航空学报, 2015, 36(01): 147-58.LI X L. Direct numerical simulation techniques for hypersonic turbulent flows[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(01): 147-58.[7] BALSARA D S, SHU C W. Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy [J]. J Comput Phys, 2000, 160(2): 405-52.[8] HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points [J]. J Comput Phys, 2005, 207(2): 542-67.[9] BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws [J]. J Comput Phys, 2008, 227(6): 3191-211.[10] MARTIN M P, TAYLOR E M, WU M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence [J]. J Comput Phys, 2006, 220(1): 270-89.[11] HU X Y, WANG Q, ADAMS N A. An adaptive central-upwind weighted essentially non-oscillatory scheme [J]. J Comput Phys, 2010, 229(23): 8952-65.[12] FU L, HU X Y, ADAMS N A. A family of high-order targeted ENO schemes for compressible-fluid simulations [J]. J Comput Phys, 2016, 305: 333-59.[13] FU L, HU X Y, ADAMS N A. A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws [J]. J Comput Phys, 2018, 374: 724-51.[14] HILL D J, PULLIN D I. Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks [J]. J Comput Phys, 2004, 194(2): 435-50.[15] PIROZZOLI S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction [J]. J Comput Phys, 2002, 178(1): 81-117.[16] 刘君, 韩芳, 魏雁昕. 对特定条件下高阶WENO格式计算结果误差的讨论[J/OL]. 航空学报:1-11[2021-09-23].http://kns.cnki.net/kcms/detail/11.1929.V.20201215.1119.023.html.LIU J, HAN F, WEI Y. Discussions on the errors of high-order WENO schemes under some specific conditions[J/OL]. Acta Aeronautica et Astronautica Sinica:1-11[2021-09-23].http://kns.cnki.net/kcms/detail/11.1929.V.20201215.1119.023.html.(in Chinese)[17] PIROZZOLI S. On the spectral properties of shock-capturing schemes [J]. J Comput Phys, 2006, 219(2): 489-97.[18] HU X Y, TRITSCHLER V K, Pirozzoli S, et al. Dispersion-dissipation condition for finite difference schemes[J]. arXiv preprint arXiv:1204.5088, 2012.[19] SUN Z S, LUO L, REN Y X, et al. A sixth order hybrid finite difference scheme based on the minimized dispersion and controllable dissipation technique [J]. J Comput Phys, 2014, 270: 238-54.[20] 李妍慧,陈琮巍,任玉新,等.高精度有限差分格式的色散优化及耗散控制[J].空气动力学学报, 2021, 39(01): 138-156.LI Y H, CHEN C W, REN Y X, et al. The dispersion optimization and dissipation adjustment for high order finite difference schemes[J]. Acta Aerodynamica Sinica, 2021, 39(01): 138-156.(in Chinese).[21] KOLMOGOROV A N. On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid[C]//Dokl. Akad. Nauk SSSR. 1941, 31: 538-540.[22] KIM D, KWON J H. A high-order accurate hybrid scheme using a central flux scheme and a WENO scheme for compressible flowfield analysis [J]. J Comput Phys, 2005, 210(2): 554-83.[23] FU L, HU X Y, ADAMS N A. Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws [J]. J Comput Phys, 2017, 349: 97-121.[24] Tennekes H , Lumley J L . A First Course in Turbulence[M]. MIT Press, 1972.[25] 张鸣远, 景思睿, 李国君. 高等工程流体力学[M]. 西安交通大学出版社, 2006.ZHANG M Y, JING S R, LI G J. Advanced Engineering Fluid Mechanics[M]. Xian Jiaotong University Press, 2006.(in Chinese).[26] JAMESON A, SCHMIDT W, TURKEL E. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes [J]. 14th fluid and plasma dynamics conference, 1981, 1259.[27] REN Y X, LIU M E, ZHANG H. A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws [J]. J Comput Phys, 2003, 192(2): 365-86.[28] CASTRO M, COSTA B, DON W S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws [J]. J Comput Phys, 2011, 230(5): 1766-92.[29] ZHAO G Y, SUN M B, PIROZZOLI S. On shock sensors for hybrid compact/WENO schemes [J]. Comput Fluids, 2020, 199.[30] LAX P D, LIU X D. Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes [J]. Siam J Sci Comput, 1998, 19(2): 319-40.[31] WOODWARD P, COLELLA P. The numerical simulation of two-dimensional fluid flow with strong shocks [J]. J Comput Phys, 1984, 54(1): 115-73.[32] JOHNSEN E, LARSSON J, BHAGATWALA A V, et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves [J]. J Comput Phys, 2010, 229(4): 1213-37. |