收稿日期:
2022-05-10
修回日期:
2022-06-13
接受日期:
2022-07-19
出版日期:
2022-07-26
发布日期:
2022-07-25
通讯作者:
汪洪波
E-mail:whbwatch@nudt.edu.cn
基金资助:
Yu ZENG, Hongbo WANG(), Mingbo SUN, Chao WANG, Xu LIU
Received:
2022-05-10
Revised:
2022-06-13
Accepted:
2022-07-19
Online:
2022-07-26
Published:
2022-07-25
Contact:
Hongbo WANG
E-mail:whbwatch@nudt.edu.cn
Supported by:
摘要:
k-ω SST湍流模型是目前综合性能最佳的涡黏模型之一,近年来得到非常广泛的应用。然而,随着问题复杂性的增加和模拟精准度要求的提高,标准SST湍流模型在某些方面呈现出明显的局限性,大量学者对其进行了相应的改进研究。围绕旋转/曲率效应、可压缩效应、激波不稳定性效应、雷诺应力各向异性效应、应力-应变偏差效应和层流/湍流转捩效应等6个方面,对SST模型的改进研究进行了评述,同时对近年的基于数据驱动技术的模型改进也进行了简要介绍;梳理了各种改进研究的思路和发展趋势,阐述了各自的适用性和局限性,并分析了影响改进效果的原因和问题所在。最后,对未来工作提出了建议。
中图分类号:
曾宇, 汪洪波, 孙明波, 王超, 刘旭. SST湍流模型改进研究综述[J]. 航空学报, 2023, 44(9): 27411-027411.
Yu ZENG, Hongbo WANG, Mingbo SUN, Chao WANG, Xu LIU. SST turbulence model improvements: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 27411-027411.
1 | MENTER F R. Zonal two equation k-ω turbulence models for aerodynamic flows[C]∥ 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Reston: AIAA, 1993. |
2 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
3 | JONES W P, LAUNDER B E. The prediction of laminarization with a two-equation model of turbulence[J]. International Journal of Heat and Mass Transfer, 1972, 15(2): 301-314. |
4 | JOHNSON D A, KING L S. A mathematically simple turbulence closure model for attached and separated turbulent boundary layers[J]. AIAA Journal, 1985, 23(11): 1684-1692. |
5 | SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21(3): 252-263. |
6 | 阎超. 航空CFD四十年的成就与困境[J]. 航空学报, 2022, 43(10): 526490. |
YAN C. Achievements and predicaments of CFD in aeronautics in past forty years[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 526490 (in Chinese). | |
7 | LAURENCE D. Large eddy simulation of industrial flows? [M]∥LAUNDER B E, SANDHAM N D. Closure strategies for turbulent and transitional flows. Cambridge: Cambridge University Press, 2001: 392-406. |
8 | HANJALIC K. Will RANS survive LES? A view of perspectives[J]. Journal of Fluids Engineering, 2005, 127(5): 831-839. |
9 | SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences: NASA/CR-2014-218178[R]. Washington, D.C.: NASA, 2014. |
10 | DURBIN P A. Some recent developments in turbulence closure modeling[J]. Annual Review of Fluid Mechanics, 2018, 50: 77-103. |
11 | CEBECI T, SMITH A M O, LIBBY P A. Analysis of turbulent boundary layers[J]. Journal of Applied Mechanics, 1976, 43(1): 189. |
12 | BALDWIN B, LOMAX H. Thin-layer approximation and algebraic model for separated turbulent flows[C]∥ 16th Aerospace Sciences Meeting. Reston: AIAA, 1978. |
13 | BALDWIN B, BARTH T. A one-equation turbulence transport model for high Reynolds number wall-bounded flows[C]∥ 29th Aerospace Sciences Meeting. Reston: AIAA, 1991. |
14 | SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥ 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
15 | HELLSTEN A, LAINE S. Explicit algebraic Reynolds-stress modelling in decelerating and separating flows[C]∥ Fluids 2000 Conference and Exhibit. Reston: AIAA, 2000. |
16 | MENTER F, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Heat and Mass Transfer, 2003, 4(1): 625-632. |
17 | KOLMOGOROV A N. Equations of turbulent motion in an incompressible fluid[J]. Proceedings of the USSR Academy of Sciences, 1941, 30(4): 299-303. |
18 | BRADSHAW P. Effects of streamline curvature on turbulent flow[R]. Paris: Advisory Group for Aerospace Reserch and Development, 1973. |
19 | AILLAUD P, GICQUEL L Y M, DUCHAINE F. Investigation of the concave curvature effect for an impinging jet flow[J]. Physical Review Fluids, 2017, 2(11): 114608. |
20 | BARLOW R S, JOHNSTON J P. Structure of a turbulent boundary layer on a concave surface[J]. Journal of Fluid Mechanics, 1988, 191: 137-176. |
21 | WANG Q C, WANG Z G, ZHAO Y X. The impact of streamwise convex curvature on the supersonic turbulent boundary layer[J]. Physics of Fluids, 2017, 29(11): 116106. |
22 | MOKHTARZADEH-DEHGHAN M R, YUAN Y M. Measurements of turbulence quantities and bursting period in developing turbulent boundary layers on the concave and convex walls of a 90° square bend[J]. Experimental Thermal and Fluid Science, 2002, 27(1): 59-75. |
23 | HUANG X, YANG W, LI Y, et al. Review on the sensitization of turbulence models to rotation/curvature and the application to rotating machinery[J]. Applied Mathematics and Computation, 2019, 341: 46-69. |
24 | LAUNDER B E, LOIZOU P A. Laminarization of three-dimensional accelerating boundary layers in a curved rectangular-sectioned duct[J]. International Journal of Heat and Fluid Flow, 1992, 13(2): 124-131. |
25 | HOFFMANN P H, MUCK K C, BRADSHAW P. The effect of concave surface curvature on turbulent boundary layers[J]. Journal of Fluid Mechanics, 1985, 161: 371-403. |
26 | DURBIN P. Adapting scalar turbulence closure models for rotation and curvature[J]. Journal of Fluids Engineering, 2011, 133(6): 061205. |
27 | BRETHOUWER G. The effect of rotation on rapidly sheared homogeneous turbulence and passive scalar transport. Linear theory and direct numerical simulation[J]. Journal of Fluid Mechanics, 2005, 542: 305-342. |
28 | KRISTOFFERSEN R, ANDERSSON H I. Direct simulations of low-Reynolds-number turbulent flow in a rotating channel[J]. Journal of Fluid Mechanics, 1993, 256: 163-197. |
29 | LAMBALLAIS E, MÉTAIS O, LESIEUR M. Spectral-dynamic model for large-eddy simulations of turbulent rotating channel flow[J]. Theoretical and Computational Fluid Dynamics, 1998, 12(3): 149-177. |
30 | GRUNDESTAM O, WALLIN S, JOHANSSON A V. Direct numerical simulations of rotating turbulent channel flow[J]. Journal of Fluid Mechanics, 2008, 598: 177-199. |
31 | WILCOX D C. Turbulence modeling for CFD[M]. 3rd ed. La Cãnada: DCW Industries, Inc., 2006: 125-129. |
32 | SPALART P R, SHUR M. On the sensitization of turbulence models to rotation and curvature[J]. Aerospace Science and Technology, 1997, 1(5): 297-302. |
33 | SHUR M L, STRELETS M K, TRAVIN A K, et al. Turbulence modeling in rotating and curved channels─Assessing the Spalart-Shur correction[J]. AIAA Journal, 2000, 38(5): 784-792. |
34 | SMIRNOV P E, MENTER F R. Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term[J]. Journal of Turbomachinery, 2009, 131(4): 041010. |
35 | MUSA O, ZHOU C S, CHEN X, et al. Prediction of swirling cold flow in a solid-fuel ramjet engine with a modified rotation/curvature correction SST turbulence model[J]. Applied Thermal Engineering, 2016, 105: 737-754. |
36 | MUSA O, CHEN X, ZHOU C S. Combustion characteristics and turbulence modeling of swirling reacting flow in solid fuel ramjet[J]. Acta Astronautica, 2017, 139: 1-17. |
37 | BRADSHAW P. The analogy between streamline curvature and buoyancy in turbulent shear flow[J]. Journal of Fluid Mechanics, 1969, 36(1): 177-191. |
38 | HOWARD J H G, PATANKAR S V, BORDYNUIK R M. Flow prediction in rotating ducts using Coriolis-modified turbulence models[J]. Journal of Fluids Engineering, 1980, 102(4): 456-461. |
39 | LAUNDER B E, PRIDDIN C H, SHARMA B I. The calculation of turbulent boundary layers on spinning and curved surfaces[J]. Journal of Fluids Engineering, 1977, 99(2): 435-437. |
40 | KHODAK A, HIRSCH C. Second-order non-linear k-ε models with explicit effect of curvature and rotation[C]∥ECCOMAS Computational Fluid Dynamics Conference, 1996: 690-696. |
41 | HELLSTEN A. Some improvements in Menter’s k-omega SST turbulence model[C]∥ 29th AIAA Fluid Dynamics Conference. Reston: AIAA, 1998. |
42 | 任芸, 吴登昊, 牟介刚, 等. 考虑旋转和曲率的湍流模型修正及应用[J]. 西安交通大学学报, 2016, 50(9): 25-30. |
REN Y, WU D H, MU J G, et al. Modification for turbulence model considering rotation and curvature with applications[J]. Journal of Xi’an Jiaotong University, 2016, 50(9): 25-30 (in Chinese). | |
43 | TRITTON D J. Stabilization and destabilization of turbulent shear flow in a rotating fluid[J]. Journal of Fluid Mechanics, 1992, 241: 503-523. |
44 | BERTOGLIO J P. Homogeneous turbulent field within a rotating frame[J]. AIAA Journal, 1982, 20(9): 1175-1181. |
45 | REIF B A P, DURBIN P A, OOI A. Modeling rotational effects in eddy-viscosity closures[J]. International Journal of Heat and Fluid Flow, 1999, 20(6): 563-573. |
46 | AROLLA S K, DURBIN P A. Modeling rotation and curvature effects within scalar eddy viscosity model framework[J]. International Journal of Heat and Fluid Flow, 2013, 39: 78-89. |
47 | GATSKI T B, SPEZIALE C G. On explicit algebraic stress models for complex turbulent flows[J]. Journal of Fluid Mechanics, 1993, 254: 59-78. |
48 | YORK W D, WALTERS D K, LEYLEK J H. A simple and robust linear eddy-viscosity formulation for curved and rotating flows[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2009, 19(6): 745-776. |
49 | DHAKAL T P, WALTERS D K. Curvature and rotation sensitive variants of the k-omega SST turbulence model[C]∥ Proceedings of ASME 2009 Fluids Engineering Division Summer Meeting. New York: ASME, 2009: 2221-2229. |
50 | DURBIN P A. Near-wall turbulence closure modeling without “damping functions”[J].Theoretical and Computational Fluid Dynamics, 1991, 3(1): 1-13. |
51 | DHAKAL T P, WALTERS D K. A three-equation variant of the SST k-ω model sensitized to rotation and curvature effects[J]. Journal of Fluids Engineering, 2011, 133(11): 111201. |
52 | LELE S K. Compressibility effects on turbulence[J]. Annual Review of Fluid Mechanics, 1994, 26: 211-254. |
53 | MORKOVIN M V. Effects of compressibility on turbulent flows[J]. Mécanique de la Turbulence, 1962, 367(380): 26. |
54 | GATSKI T B, ERLEBACHER G. Numerical simulation of a spatially evolving supersonic turbulent boundary layer: NASA/TM-2002-211934[R]. Washington, D.C.: NASA, 2002. |
55 | PIROZZOLI S, GRASSO F, GATSKI T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids, 2004, 16(3): 530-545. |
56 | BRADSHAW P. Turbulence modeling with application to turbomachinery[J]. Progress in Aerospace Sciences, 1996, 32(6): 575-624. |
57 | COLEMAN G N, KIM J, MOSER R D. A numerical study of turbulent supersonic isothermal-wall channel flow[J]. Journal of Fluid Mechanics, 1995, 305: 159-183. |
58 | WILCOX D. Progress in hypersonic turbulence modeling[C]∥ 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston: AIAA, 1991. |
59 | SARKAR S. The pressure-dilatation correlation in compressible flows[J]. Physics of Fluids A: Fluid Dynamics, 1992, 4(12): 2674-2682. |
60 | ZEMAN O. Dilatation dissipation: The concept and application in modeling compressible mixing layers[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(2): 178-188. |
61 | SHYY W, KRISHNAMURTY V S. Compressibility effects in modeling complex turbulent flows[J]. Progress in Aerospace Sciences, 1997, 33(9-10): 587-645. |
62 | ZEMAN O. A new model for super/hypersonic turbulent boundary layers[C]∥ 31st Aerospace Sciences Meeting. Reston: AIAA, 1993. |
63 | El BAZ A M, LAUNDER B E. Second-moment modelling of compressible mixing layers[M]∥ RODI W, MARTELLI F. Engineering turbulence modelling and experiments 2. Amsterdam: Elsevier, 1993: 63-72. |
64 | WILCOX D C. Dilatation-dissipation corrections for advanced turbulence models[J]. AIAA Journal, 1992, 30(11): 2639-2646. |
65 | ERDEM E, KONTIS K. Numerical and experimental investigation of transverse injection flows[J]. Shock Waves, 2010, 20(2): 103-118. |
66 | BROWN J. Turbulence model validation for hypersonic flows[C]∥ 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston: AIAA, 2002. |
67 | TU G H, DENG X, MAO M. Assessment of two turbulence models and some compressibility corrections for hypersonic compression corners by high-order difference schemes[J]. Chinese Journal of Aeronautics, 2012, 25(1): 25-32. |
68 | SUZEN Y, HOFFMANN K. Investigation of supersonic jet exhaust flow by one- and two-equation turbulence models[C]∥ 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998. |
69 | 康宏琳. 高超声速湍流气动加热的数值模拟研究[D]. 北京: 北京航空航天大学, 2007: 51-58. |
KANG H L. Numerical simulation of aerodynamic heating in hypersonic turbulent flows[D]. Beijing: Beihang University, 2007: 51-58 (in Chinese). | |
70 | FUJIWARA H, ARAKAWA C. Modelling of compressible turbulent flows with emphasis on pressure-dilatation correlation[M]∥RODI W, BERGELES G. Engineering turbulence modelling and experiments 3. Amsterdam: Elsevier, 1996: 151-160. |
71 | El BAZ A M. Modelling compressibility effects on free turbulent shear flows[C]∥5th Biennial Colloquium on Computational Fluid Dynamics, 1992: 27-28. |
72 | KRISHNAMURTY V S, SHYY W. Study of compressibility modifications to the k-ε turbulence model[J]. Physics of Fluids, 1997, 9(9): 2769-2788. |
73 | KRISHNAMURTY V S, SHYY W. Treatment of inviscid fluxes in compressible turbulent flow computations[J]. Numerical Heat Transfer, Part B: Fundamentals, 1998, 33(2): 139-152. |
74 | RISTORCELLI J R. A representation for the turbulent mass flux contribution to Reynolds-stress and two-equation closures for compressible turbulence: No. NAS 1.26: 191569[R]. 1993. |
75 | GAVIGLIO J, DUSSAUGE J P, DEBIEVE J F, et al. Behavior of a turbulent flow, strongly out of equilibrium, at supersonic speeds[J]. Physics of Fluids, 1977, 20(10): S179-S192. |
76 | RUBESIN M W. Extra compressibility terms for Favre-averaged two-equation models of inhomogeneous turbulent flows: NASA-CR-177556[R]. Washington, D.C.: NASA, 1990. |
77 | CHASSAING P. The modeling of variable density turbulent flows: A review of first-order closure schemes[J]. Flow, Turbulence and Combustion, 2001, 66(4): 293-332. |
78 | 刘景源. SST二方程湍流模型在高超声速绕流中的可压缩修正[J]. 宇航学报, 2012, 33(12): 1719-1726. |
LIU J Y. Compressibility correction for the SST two-equation turbulence model in hypersonic flows[J]. Journal of Astronautics, 2012, 33(12): 1719-1726 (in Chinese). | |
79 | 甘文彪, 周洲, 许晓平, 等. 基于改进SST模型的分离流动数值模拟[J]. 推进技术, 2013, 34(5): 595-602. |
GAN W B, ZHOU Z, XU X P, et al. Investigation on improving the capability of predicting separation in modified SST turbulence model[J]. Journal of Propulsion Technology, 2013, 34(5): 595-602 (in Chinese). | |
80 | SARKAR S. The stabilizing effect of compressibility in turbulent shear flow[J]. Journal of Fluid Mechanics, 1995, 282: 163-186. |
81 | HEINZ S. A model for the reduction of the turbulent energy redistribution by compressibility[J]. Physics of Fluids, 2003, 15(11): 3580-3583. |
82 | NIU D S, HOU L Y. Comparison study on different compressibility modifications of turbulence model in supersonic combustion simulation[J]. Advances in Mechanical Engineering, 2014, 6: 238250. |
83 | 韩省思. 超声速燃烧中湍流模型的研究[D]. 合肥: 中国科学技术大学, 2009: 59-66. |
HAN X S. Turbulence modeling for supersonic combustion[D]. Hefei: University of Science and Technology of China, 2009: 59-66 (in Chinese). | |
84 | DURBIN P A. On the k-ε stagnation point anomaly[J]. International Journal of Heat and Fluid Flow, 1996, 17(1): 89-90. |
85 | DUAN L, BEEKMAN I, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number[J]. Journal of Fluid Mechanics, 2011, 672: 245-267. |
86 | ROSE W C, MURPHY J D. Ratio of Reynolds shear stress to turbulence kinetic energy in a boundary layer[J]. Physics of Fluids, 1973, 16(6): 935-937. |
87 | 刘景源. SST湍流模型在高超声速绕流中的改进[J]. 航空学报, 2012, 33(12): 2192-2201. |
LIU J Y. An improved SST turbulence model for hypersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2192-2201 (in Chinese). | |
88 | GEORGIADIS N, YODER D. Recalibration of the shear stress transport model to improve calculation of shock separated flows[C]∥ 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013. |
89 | EVANS S, LARDEAU S. Validation of a turbulence methodology using the SST k-ω model for adjoint calculation[C]∥ 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
90 | KNIGHT D, YAN H, PANARAS A G, et al. Advances in CFD prediction of shock wave turbulent boundary layer interactions[J]. Progress in Aerospace Sciences, 2003, 39(2-3): 121-184. |
91 | PICKLES J D, METTU B R, SUBBAREDDY P K, et al. On the mean structure of sharp-fin-induced shock wave/turbulent boundary layer interactions over a cylindrical surface[J]. Journal of Fluid Mechanics, 2019, 865: 212-246. |
92 | YAN L, WU H, HUANG W, et al. Shock wave/turbulence boundary layer interaction control with the secondary recirculation jet in a supersonic flow[J]. Acta Astronautica, 2020, 173: 131-138. |
93 | SETTLES G S, DODSON L J. Supersonic and hypersonic shock/boundary-layer interaction database[J]. AIAA Journal, 1994, 32(7): 1377-1383. |
94 | ANDREOPOULOS Y, AGUI J H, BRIASSULIS G. Shock wave-turbulence interactions[J]. Annual Review of Fluid Mechanics, 2000, 32: 309-345. |
95 | DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research: What next?[J]. AIAA Journal, 2001, 39(8): 1517-1531. |
96 | CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46: 469-492. |
97 | GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72: 80-99. |
98 | 张昊元, 孙东, 邱波, 等. 湍动能在激波/边界层干扰流动中的影响[J]. 航空学报, 2022, 43(7): 125504. |
ZHANG H Y, SUN D, QIU B, et al. Influence of turbulent kinetic energy on shock wave/boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 125504 (in Chinese). | |
99 | 范孝华, 唐志共, 王刚, 等. 激波/湍流边界层干扰低频非定常性研究评述[J]. 航空学报, 2022, 43(1): 625917. |
FAN X H, TANG Z G, WANG G, et al. Review of low-frequency unsteadiness in shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625917 (in Chinese). | |
100 | 程剑锐, 施崇广, 瞿丽霞, 等. 二维弯曲激波/湍流边界层干扰流动理论建模[J]. 航空学报, 2022, 43(9): 125993. |
CHENG J R, SHI C G, QU L X, et al. Theoretical model of 2D curved shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 125993 (in Chinese). | |
101 | BENEK J. Lessons learned from the 2010 AIAA shock boundary layer interaction prediction workshop[C]∥ 28th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2010. |
102 | VIEIRA R F, AZEVEDO J L F. Turbulence model assessment for simulation of shock wave-boundary layer interaction flows[C]∥ 31st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2013. |
103 | HIRSCH C. Lessons learned from the first AIAA-SWBLI workshop CFD simulations of two test cases[C]∥ 28th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2010. |
104 | SINHA K, MAHESH K, CANDLER G V. Modeling shock unsteadiness in shock/turbulence interaction[J]. Physics of Fluids, 2003, 15(8): 2290-2297. |
105 | SINHA K, MAHESH K, CANDLER G V. Modeling the effect of shock unsteadiness in shock/turbulent boundary-layer interactions[J]. AIAA Journal, 2005, 43(3): 586-594. |
106 | PASHA A A, SINHA K. Simulation of hypersonic shock/turbulent boundary-layer interactions using shock-unsteadiness model[J]. Journal of Propulsion and Power, 2012, 28(1): 46-60. |
107 | VEMULA J B, JOSHI T K, SINHA K. Application of shock-unsteadiness model to interaction of transverse sonic jet and supersonic crossflow[C]∥ AIAA Aviation 2021 Forum. Reston: AIAA, 2021. |
108 | ROY S, PATHAK U, SINHA K. Variable turbulent Prandtl number model for shock/boundary-layer interaction[J]. AIAA Journal, 2018, 56(1): 342-355. |
109 | RAJE P, SINHA K. Anisotropic SST turbulence model for shock-boundary layer interaction[J]. Computers & Fluids, 2021, 228: 105072. |
110 | RAJE P, SINHA K. Formulation of advanced SST turbulence model for shock-boundary layer interaction[C]∥ AIAA Aviation 2021 Forum. Reston: AIAA, 2021. |
111 | 韩省思, 叶桃红, 朱旻明, 等. 一个新的可压缩性修正的k-ε模型[J]. 空气动力学学报, 2009, 27(6): 677-682. |
HAN X S, YE T H, ZHU M M, et al. A new k-ε turbulence model with compressibility modifications[J]. Acta Aerodynamica Sinica, 2009, 27(6): 677-682 (in Chinese). | |
112 | LARSSON J, LELE S K. Direct numerical simulation of canonical shock/turbulence interaction[J]. Physics of Fluids, 2009, 21(12): 126101. |
113 | JAMME S, CAZALBOU J B, TORRES F, et al. Direct numerical simulation of the interaction between a shock wave and various types of isotropic turbulence[J]. Flow, Turbulence and Combustion, 2002, 68(3): 227-268. |
114 | POPE S B. A more general effective-viscosity hypothesis[J]. Journal of Fluid Mechanics, 1975, 72(2): 331-340. |
115 | GATSKI T B, JONGEN T. Nonlinear eddy viscosity and algebraic stress models for solving complex turbulent flows[J]. Progress in Aerospace Sciences, 2000, 36(8): 655-682. |
116 | THIVET F. Lessons learned from RANS simulations of shock-wave/boundary-layer interactions[C]∥ 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002. |
117 | WILCOX D, RUBESIN M W. Progress in turbulence modeling for complex flow fields including effects of compressibility: NASA-TP-1517[R]. Washington, D.C.: NASA, 1980. |
118 | SHIH T H, ZHU J, LUMLEY J L. A realizable Reynolds stress algebraic equation model[M]. Washington, D.C.: NASA, 1993: 235-241. |
119 | CRAFT T J, LAUNDER B E, SUGA K. Development and application of a cubic eddy-viscosity model of turbulence[J]. International Journal of Heat and Fluid Flow, 1996, 17(2): 108-115. |
120 | APSLEY D D, LESCHZINER M A. A new low-Reynolds-number nonlinear two-equation turbulence model for complex flows[J]. International Journal of Heat and Fluid Flow, 1998, 19(3): 209-222. |
121 | 舒博文, 杜一鸣, 高正红, 等. 典型航空分离流动的雷诺应力模型数值模拟[J]. 航空学报, 2022, 43(11): 526385. |
SHU B W, DU Y M, GAO Z H, et al. Numerical simulation of Reynolds stress model of typical aerospace separated flow[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 526385 (in Chinese). | |
122 | WALLIN S, JOHANSSON A V. An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows[J]. Journal of Fluid Mechanics, 2000, 403: 89-132. |
123 | RUNG T, LÜBCKE H, FRANKE M, et al. Assessment of explicit algebraic stress models in transonic flows[M]∥RODI W, LAURENCE D. Engineering turbulence modelling and experiments 4. Amsterdam: Elsevier, 1999: 659-668. |
124 | REVELL A J, CRAFT T J, LAURENCE D R. Turbulence modelling of unsteady turbulent flows using the stress strain lag model[J]. Flow, Turbulence and Combustion, 2011, 86(1): 129-151. |
125 | LARDEAU S, BILLARD F. Development of an elliptic-blending lag model for industrial applications[C]∥ 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
126 | MANCEAU R, HANJALIĆ K. Elliptic blending model: A new near-wall Reynolds-stress turbulence closure[J]. Physics of Fluids, 2002, 14(2): 744-754. |
127 | BISWAS R, DURBIN P A, MEDIC G. Development of an elliptic blending lag k-ω model[J]. International Journal of Heat and Fluid Flow, 2019, 76: 26-39. |
128 | SHANG W J, AGARWAL R K. Development and validation of an elliptic blending lag SST k-ω turbulence model[C]∥ AIAA Aviation 2020 Forum. Reston: AIAA, 2020. |
129 | SHANG W J, AGARWAL R K. Development and validation of an elliptic blending lag wall-distance-free SST k-ω turbulence model[C]∥ AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
130 | GOLDBERG U C, BATTEN P. A wall-distance-free version of the SST turbulence model[J]. Engineering Applications of Computational Fluid Mechanics, 2015, 9(1): 33-40. |
131 | WALKER G J. The role of laminar-turbulent transition in gas turbine engines: A discussion[J]. Journal of Turbomachinery, 1993, 115(2): 207-216. |
132 | MAYLE R E, SCHULZ A. The path to predicting bypass transition[J]. Journal of Turbomachinery, 1997, 119(3): 405-411. |
133 | MALKIEL E, MAYLE R E. Transition in a separation bubble[J]. Journal of Turbomachinery, 1996, 118(4): 752-759. |
134 | MENTER F R, ESCH T, KUBACKI S. Transition modelling based on local variables[M]∥RODI W, FUEYO N. Engineering turbulence modelling and experiments 5. Amsterdam: Elsevier, 2002: 555-564. |
135 | MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables—Part I: Model formulation[J]. Journal of Turbomachinery, 2006, 128(3): 413-422. |
136 | MENTER F R, LANGTRY R, VÖLKER S. Transition modelling for general purpose CFD codes[J]. Flow, Turbulence and Combustion, 2006, 77(1): 277-303. |
137 | LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906. |
138 | 孟德虹, 张玉伦, 王光学, 等. γ-Reθ 转捩模型在二维低速问题中的应用[J]. 航空学报, 2011, 32(5): 792-801. |
MENG D H, ZHANG Y L, WANG G X, et al. Application of γ-Reθ transition model to two-dimensional low speed flows[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 792-801 (in Chinese). | |
139 | HOU Y, WRAY T, AGARWAL R K. Application of SST k-ω transition model to flow past smooth and rough airfoils[C]∥ 47th AIAA Fluid Dynamics Conference. Reston: AIAA, 2017. |
140 | HELLSTEN A, LAINE S, HELLSTEN A, et al. Extension of the k-omega-SST turbulence model for flows over rough surfaces[C]∥ 22nd Atmospheric Flight Mechanics Conference. Reston: AIAA, 1997. |
141 | ENDO S, SUJISAKULVONG T, KUYA Y, et al. Laminar-turbulent transition modeling with a Reynolds stress model for anisotropic flow characteristics[C]∥ AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
142 | BARROUILLET B, LAURENDEAU É, YANG H. Calibration of the transitional k⁃ω⁃γ⁃Reθt turbulence model[J]. AIAA Journal, 2022, 60(7): 4140-4148. |
143 | PIOTROWSKI M, ZINGG D W. Investigation of a local correlation-based transition model in a Newton-Krylov algorithm[C]∥ AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
144 | DURBIN P. An intermittency model for bypass transition[J]. International Journal of Heat and Fluid Flow, 2012, 36: 1-6. |
145 | GE X, AROLLA S, DURBIN P. A bypass transition model based on the intermittency function[J]. Flow, Turbulence and Combustion, 2014, 93(1): 37-61. |
146 | MENTER F R, SMIRNOV P E, LIU T, et al. A one-equation local correlation-based transition model[J]. Flow, Turbulence and Combustion, 2015, 95(4): 583-619. |
147 | KATO M. The modeling of turbulent flow around stationary and vibrating square cylinders[C]∥Proceedings of 9th Symposium on Turbulence and Shear Flows, 1993: 4-10. |
148 | WANG J Y, SHENG C H. A comparison of a local correlation-based transition model coupled with SA and SST turbulence models[C]∥ 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015. |
149 | WEATHERITT J, SANDBERG R. A novel evolutionary algorithm applied to algebraic modifications of the RANS stress-strain relationship[J]. Journal of Computational Physics, 2016, 325: 22-37. |
150 | TRACEY B D, DURAISAMY K, ALONSO J J. A machine learning strategy to assist turbulence model development[C]∥ 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015. |
151 | OLIVER T A, MOSER R. Uncertainty quantification for rans turbulence model predictions[C]∥APS Division of Fluid Dynamics Meeting Abstracts, 2009. |
152 | LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807: 155-166. |
153 | WANG J X, WU J L, XIAO H. Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data[J]. Physical Review Fluids, 2017, 2(3): 034603. |
154 | 米俊亦. 湍流模式理论的机器学习研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 41-43. |
MI J Y. Research on turbulence modeling theory with machine learning[D]. Harbin: Harbin Institute of Technology, 2017: 41-43 (in Chinese). | |
155 | 孙亮. 基于机器学习的代数湍流模型建模[D]. 南京: 南京航空航天大学, 2019. |
SUN L. An algebraic turbulence model based on machine learning[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). | |
156 | BANKO A J, EATON J K. Estimating performance bounds of machine-learning Reynolds-stress models via optimal tensor basis expansions[C]∥Center for Turbulence Research Annual Research Briefs, 2020. |
157 | 叶舒然, 张珍, 王一伟, 等. 基于卷积神经网络的深度学习流场特征识别及应用进展[J]. 航空学报, 2021, 42(4): 524736. |
YE S R, ZHANG Z, WANG Y W, et al. Progress in deep convolutional neural network based flow field recognition and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524736 (in Chinese). | |
158 | 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689. |
ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689 (in Chinese). | |
159 | WEATHERITT J, SANDBERG R D. The development of algebraic stress models using a novel evolutionary algorithm[J]. International Journal of Heat and Fluid Flow, 2017, 68: 298-318. |
160 | TAGHIZADEH S, WITHERDEN F D, GIRIMAJI S S. Turbulence closure modeling with data-driven techniques: Physical compatibility and consistency considerations[J]. New Journal of Physics, 2020, 22(9): 093023. |
161 | KAANDORP M L A, DWIGHT R P. Data-driven modelling of the Reynolds stress tensor using random forests with invariance[J]. Computers & Fluids, 2020, 202: 104497. |
[1] | 汪洪波, 曾宇, 熊大鹏, 杨揖心, 孙明波. SST湍流模型的激波与可压缩效应改进[J]. 航空学报, 2024, 45(3): 128694-128694. |
[2] | 张恺玲, 李思怡, 段毅, 阎超. 进气道流动中SST湍流模型参数的不确定度量化[J]. 航空学报, 2023, 44(S2): 729429-729429. |
[3] | 刘锬韬, 李瑞宇, 高丽敏, 赵磊. 基于数据同化的试验数据驱动的叶栅流场预测[J]. 航空学报, 2023, 44(14): 628201-628201. |
[4] | 陈涛, 徐兴平, 张宏达, 韩省思. 自适应湍流耦合建表燃烧模型的振荡燃烧数值模拟[J]. 航空学报, 2023, 44(14): 628207-628207. |
[5] | 陈伟芳, 孙精华, 田得阳, 陈烨斯. 物理化学模型对流场电磁散射特性的影响[J]. 航空学报, 2023, 44(12): 127707-127707. |
[6] | 田得阳, 平熠, 陈烨斯, 陈伟芳. 物理化学模型对流场电磁波传播特性影响[J]. 航空学报, 2022, 43(S2): 214-224. |
[7] | 王新光, 毛枚良, 何琨, 陈琦, 万钊. 壁面函数在超声速湍流模拟中的应用[J]. 航空学报, 2022, 43(9): 126153-126153. |
[8] | 刘清扬, 雷娟棉, 刘周, 石磊, 周伟江. 适用于可压缩流动的γ-Reθt-fRe转捩模型[J]. 航空学报, 2022, 43(8): 125794-125794. |
[9] | 张昊元, 孙东, 邱波, 朱言旦, 王安龄. 湍动能在激波/边界层干扰流动中的影响[J]. 航空学报, 2022, 43(7): 125504-125504. |
[10] | 舒博文, 杜一鸣, 高正红, 夏露, 陈树生. 典型航空分离流动的雷诺应力模型数值模拟[J]. 航空学报, 2022, 43(11): 526385-526385. |
[11] | 谢晨月, 王建春, 万敏平, 陈十一. 基于人工神经网络的可压缩湍流大涡模拟模型[J]. 航空学报, 2021, 42(9): 625723-625723. |
[12] | 陈江涛, 章超, 吴晓军, 赵炜. 考虑数值离散误差的湍流模型选择引入的不确定度量化[J]. 航空学报, 2021, 42(9): 625741-625741. |
[13] | 陈江涛, 赵娇, 章超, 刘深深, 张耀冰, 吴晓军. 数值模拟方法对NASA CRM模型阻力预测的影响[J]. 航空学报, 2020, 41(4): 123383-123383. |
[14] | 张亦知, 程诚, 范钇彤, 李高华, 李伟鹏. 基于物理知识约束的数据驱动式湍流模型修正及槽道湍流计算验证[J]. 航空学报, 2020, 41(3): 123282-123282. |
[15] | 郑忠华, 范周琴, 王子昂, 余彬, 张斌. 流场可压缩性对涡相互作用影响的数值研究[J]. 航空学报, 2020, 41(2): 123295-123295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学