航空学报 > 2023, Vol. 44 Issue (22): 128883-128883   doi: 10.7527/S1000-6893.2023.28883

自适应康达喷气控制在高负荷压气机中的试验研究

张健1, 张敏2,3,4,5, 杜娟2,3,4,5(), 黄伟亮6, 聂超群2,3,4,5   

  1. 1.华北电力大学 能源动力与机械工程学院,北京 100096
    2.中国科学院 工程热物理研究所 先进燃气轮机实验室,北京 100190
    3.中国科学院 先进能源动力重点实验室,北京 100190
    4.中国科学院 轻型动力创新研究院,北京 100190
    5.中国科学院大学 工程科学学院,北京 100049
    6.江苏大学 能源与动力工程学院,镇江 212013
  • 收稿日期:2023-04-18 修回日期:2023-05-12 接受日期:2023-06-07 出版日期:2023-06-19 发布日期:2023-06-16
  • 通讯作者: 杜娟 E-mail:dujuan@iet.cn
  • 基金资助:
    国家科技重大专项(2017-II-0004-0017);中国科学院战略性先导科技专项(XDA29050000)

Experimental investigation into adaptive Coanda jet control in highly loaded compressor

Jian ZHANG1, Min ZHANG2,3,4,5, Juan DU2,3,4,5(), Weiliang HUANG6, Chaoqun NIE2,3,4,5   

  1. 1.School of Energy Power and Mechanical Engineering,North China Electric Power University,Beijing 100096,China
    2.Advanced Gas Turbine Laboratory,Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China
    3.Key Laboratory of Advanced Energy and Power,Chinese Academy of Sciences,Beijing 100190,China
    4.Innovation Academy for Light-Duty Gas Turbine,Chinese Academy of Sciences,Beijing 100190,China
    5.School of Engineering Science,University of Chinese Academy of Sciences,Beijing 100049,China
    6.School of Energy and Power Engineering,Jiangsu University,Zhenjiang 212013,China
  • Received:2023-04-18 Revised:2023-05-12 Accepted:2023-06-07 Online:2023-06-19 Published:2023-06-16
  • Contact: Juan DU E-mail:dujuan@iet.cn
  • Supported by:
    National Science and Technology Major Project(2017-II-0004-0017);Strategic Priority Research Program of the Chinese Academy of Sciences(XDA29050000)

摘要:

未来航空发动机的发展要求其压缩系统级负荷不断增大,由此将使得压气机内部出现较强的角区分离、附面层流动分离等二次流。提出了一种新型的自适应康达喷气流动控制(ACJC)方法,更加智能且高效地抑制压气机内部流动分离并提升压气机的扩压能力,进而拓宽高负荷压气机稳定、高效运行范围。为构建自适应康达喷气流动控制系统并在高负荷压气机上验证其控制效果,首先,选取了扩压因子为0.66的压气机静叶叶栅为研究对象,并优化设计了单缝康达喷气静叶叶栅;然后,基于数值计算结果采用方差分析法、主成分分析法和神经网络算法建立了单缝康达喷气静叶叶栅来流攻角预测模型和最佳喷气量预测模型;最后,搭建了基于自适应康达喷气流动控制系统的试验平台,验证了其对高负荷叶栅流动分离控制的有效性和准确性。试验结果表明:在不同攻角和不同来流马赫数条件下,自适应康达喷气流动控制系统能够实时准确地预测来流攻角,并瞬间做出喷气量实时调节与反馈。此外,在5°来流攻角下,当来流马赫数为0.4、0.5和0.6时,相比于无康达喷气叶栅,康达喷气的引入使得总压损失系数分别降低了11.5%、9.8%和8.0%。

关键词: 航空发动机, 高负荷压气机, 自适应康达喷气, 流动控制, 总压损失

Abstract:

Future development of aeroengines requires continuous increase in the compressor stage load, which will result in strong secondary flows such as corner separation and boundary layer flow separation in the compressor. In this paper, a new Adaptive Coanda Jet Control (ACJC) technology is proposed to intelligently and efficiently restrain the flow separation in the compressor and improve the diffusion capacity of the compressor, and the stable and efficient operation range of the highly loaded compressor is dramatically broadened. To construct the ACJC system and verify its control effect in a highly loaded compressor, we first employ a highly loaded compressor stator cascade constructed based on the Zierke & Deutsch airfoil to investigate the ACJC system, with the diffusion factor of 0.66 at the design point. Then, the variance analysis method, principal component analysis method and neural network algorithm are adopted to establish the incidence angle prediction model and the optimal injection mass flow rate prediction model of the Coanda jet flap. Finally, an experimental platform based on the ACJC system is built to verify the effectiveness and accuracy of flow separation control for the highly loaded cascade. The experimental results indicate that the ACJC system can accurately predict the incidence angle and adjust the Coanda jet mass flow rate in real time at different incidence angles and different incoming Mach numbers. In addition, compared to the cascade without the ACJC system at the incidence angel of 5°, the total pressure loss coefficient is reduced by 11.5%, 9.8% and 8.0% for incoming Mach numbers of 0.4, 0.5 and 0.6, respectively.

Key words: aeroengine, highly loaded compressor, adaptive Coanda jet, flow control, total pressure loss

中图分类号: