1 |
BUSHNELL D M. Shock wave drag reduction[J]. Annual Review of Fluid Mechanics, 2004, 36: 81-96.
|
2 |
YADAV R, GUVEN U. Aerodynamic heating of a hypersonic projectile with forward-facing ellipsoid cavity at nose[J]. Journal of Spacecraft and Rockets, 2015, 52(1): 157-165.
|
3 |
HAYASHI K, ASO S, TANI Y. Experimental study on thermal protection system by opposing jet in supersonic flow[J]. Journal of Spacecraft and Rockets, 2006, 43(1): 233-235.
|
4 |
HUANG W, YAN L. Progress in research on mixing techniques for transverse injection flow fields in supersonic crossflows[J]. Journal of Zhejiang University Science A, 2013, 14(8): 554-564.
|
5 |
MANSOUR K, KHORSANDI M. The drag reduction in spherical spiked blunt body[J]. Acta Astronautica, 2014, 99: 92-98.
|
6 |
DEM’YANOV Y A, LAPYGIN V I. Solution of the problems of spacecraft aerothermodynamics[J]. Fluid Dynamics, 2012, 47(4): 527-542.
|
7 |
KNIGHT D. Survey of aerodynamic drag reduction at high speed by energy deposition[J]. Journal of Propulsion and Power, 2008, 24(6): 1153-1167.
|
8 |
SAKAI T, SEKIYA Y, MORI K, et al. Interaction between laser-induced plasma and shock wave over a blunt body in a supersonic flow[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008, 222(5): 605-617.
|
9 |
李铮, 徐聪, 张健, 等. 等离子体合成射流激励器高速流场逆向喷流控制[J]. 航空学报, 2022, 43(S2): 225-232.
|
|
LI Z, XU C, ZHANG J, et al. Reverse jet flow control by plasma synthetic jet actuator in high speed flow field[J]. Acta Aeronauticaet Astronautica Sinica, 2022, 43(S2): 225-232 (in Chinese).
|
10 |
JIANG Z L, LIU Y F, HAN G L. Conceptual study on non-ablative TPS for hypersonic vehicles[C]∥ Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011: AIAA2011-2372.
|
11 |
KHAMOOSHI A, TAYLOR T, RIGGINS D W. Drag and heat transfer reductions in high-speed flows[J]. AIAA Journal, 2007, 45(10): 2401-2413.
|
12 |
SHEN Y, ZHANG J, XU X A, et al. Investigation on the opposing jet in the hypersonic rarefied flow over a vehicle based on the DSMC method[J]. Actuators, 2022, 11(6): 164.
|
13 |
何琨, 陈坚强, 董维中. 逆向喷流流场模态分析及减阻特性研究[J]. 力学学报, 2006, 38(4): 438-445.
|
|
HE K, CHEN J Q, DONG W Z. Penetration mode and drag reduction research in hypersonic flows using a counter-flow jet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4): 438-445 (in Chinese).
|
14 |
周超英, 纪文英, 张兴伟, 等. 超声速钝体逆向喷流减阻的数值模拟研究[J]. 应用力学学报, 2012, 29(2): 159-163, 238.
|
|
ZHOU C Y, JI W Y, ZHANG X W, et al. Numerical investigation on counter-flow jet drag reduction of a bluff body in supersonic flow[J]. Chinese Journal of Applied Mechanics, 2012, 29(2): 159-163, 238 (in Chinese).
|
15 |
高广宇, 刘冰, 黄伟, 等. 高超声速飞行器逆向射流减阻防热技术综述[J]. 战术导弹技术, 2021(4): 67-75, 135.
|
|
GAO G Y, LIU B, HUANG W, et al. Review of opposing jet drag reduction and thermal protection technology for hypersonic vehicle[J]. Tactical Missile Technology, 2021(4): 67-75, 135 (in Chinese).
|
16 |
FINLEY P J. The flow of a jet from a body opposing a supersonic free stream[J]. Journal of Fluid Mechanics, 1966, 26(2): 337-368.
|
17 |
CHEN L W, WANG G L, LU X Y. Numerical investigation of a jet from a blunt body opposing a supersonic flow[J]. Journal of Fluid Mechanics, 2011, 684: 85-110.
|
18 |
DESAI S, PRAKASH K V, KULKARNI V, et al. Universal scaling parameter for a counter jet drag reduction technique in supersonic flows[J]. Physics of Fluids, 2020, 32(3): 036105.
|
19 |
吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405.
|
|
WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405 (in Chinese).
|
20 |
GROSSMAN K, BOHDAN C, VANWIE D. Sparkjet actuators for flow control[C]∥ Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003: AIAA2003-57.
|
21 |
CARUANA D, BARRICAU P, GLEYZES C. Separation control with plasma synthetic jet actuators[J]. International Journal of Aerodynamics, 2013, 3(1/2/3): 71.
|
22 |
SARY G, DUFOUR G, ROGIER F, et al. Modeling and parametric study of a plasma synthetic jet for flow control[J]. AIAA Journal, 2014, 52(8): 1591-1603.
|
23 |
LIU R B, NIU Z G, WANG M M, et al. Aerodynamic control of NACA 0021 airfoil model with spark discharge plasma synthetic jets[J]. Science China Technological Sciences, 2015, 58(11): 1949-1955.
|
24 |
周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027.
|
|
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese).
|
25 |
NARAYANASWAMY V, RAJA L L, CLEMENS N T. Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control[J]. AIAA Journal, 2010, 48(2): 297-305.
|
26 |
NARAYANASWAMY V, RAJA L L, CLEMENS N T. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator[J]. Physics of Fluids, 2012, 24(7): 076101.
|
27 |
JIN D, CUI W, LI Y, et al. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow[J]. Chinese Journal of Aeronautics, 2015, 28(1): 66-76.
|
28 |
ZONG H H, KOTSONIS M. Experimental investigation on frequency characteristics of plasma synthetic jets[J]. Physics of Fluids, 2017, 29(11): 115107.
|
29 |
GENG X, ZHANG W L, SHI Z W, et al. Experimental study on frequency characteristics of the actuations produced by plasma synthetic jet actuator and its geometric effects[J]. Physics of Fluids, 2021, 33(6): 067113.
|
30 |
GREENE B R, CLEMENS N T, MAGARI P, et al. Control of mean separation in shock boundary layer interaction using pulsed plasma jets[J]. Shock Waves, 2015, 25(5): 495-505.
|
31 |
陈加政, 胡国暾, 樊国超, 等. 等离子体合成射流对钝头激波的控制与减阻[J]. 航空学报, 2021, 42(7): 124773.
|
|
CHEN J Z, HU G, FAN G C, et al. Bow shock wave control and drag reduction by plasma synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124773 (in Chinese).
|
32 |
XIE W, LUO Z B, ZHOU Y, et al. Experimental and numerical investigation on opposing plasma synthetic jet for drag reduction[J]. Chinese Journal of Aeronautics, 2022, 35(8): 75-91.
|
33 |
XIE W, LUO Z B, HOU L, et al. Characterization of plasma synthetic jet actuator with Laval-shaped exit and application to drag reduction in supersonic flow[J]. Physics of Fluids, 2021, 33(9): 096104.
|
34 |
SHYY W, JAYARAMAN B, ANDERSSON A. Modeling of glow discharge-induced fluid dynamics[J]. Journal of Applied Physics, 2002, 92(11): 6434-6443.
|
35 |
刘是成, 姜应磊, 董昊. 高超声速圆锥边界层不稳定性及转捩实验研究[J]. 实验流体力学, 2022, 36(2): 122-130.
|
|
LIU S C, JIANG Y L, DONG H. Experimental study on instability and transition over hypersonic boundary layer on a straight cone[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 122-130 (in Chinese).
|
36 |
周岩. 新型等离子体合成射流及其激波控制特性研究[D]. 长沙: 国防科技大学, 2018.
|
|
ZHOU Y. Study on new plasma synthetic jet and its shock wave control characteristics[D].Changsha: National University of Defense Technology, 2018 (in Chinese).
|
37 |
丁博, 陈真利, 焦子涵, 等. 脉冲表面电弧放电对高超声速压缩拐角的非定常控制机理[J]. 航空学报, 2023, 44(12): 127744.
|
|
DING B, CHEN Z L, JIAO Z H, et al. Unsteady control mechanisms of hypersonic compression corner using pulsed surface arc discharge[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 127744 (in Chinese).
|