航空学报 > 2023, Vol. 44 Issue (21): 528520-528520   doi: 10.7527/S1000-6893.2023.28520

激波/平板层流边界层干扰熵增特性

宋家辉1,2,3, 许爱国2,4,5, 苗龙1,6(), 廖煜淦1, 梁福文1, 田丰1, 聂明卿1, 王宁飞1   

  1. 1.北京理工大学 宇航学院,北京  100081
    2.北京应用物理与计算数学研究所 计算物理全国重点实验室,北京  100088
    3.冲击波物理与爆轰物理全国重点实验室,绵阳  621900
    4.北京理工大学 爆炸科学技术国家重点实验室,北京  100081
    5.北京大学 工学院 应用物理与技术研究中心 高能量密度物理数值模拟教育部重点实验室,北京  100871
    6.北京理工大学 重庆创新中心,重庆  404100
  • 收稿日期:2023-02-01 修回日期:2023-03-01 接受日期:2023-07-23 出版日期:2023-11-15 发布日期:2023-08-11
  • 通讯作者: 苗龙 E-mail:miaolong@bit.edu.cn
  • 基金资助:
    国家自然科学基金(12172061);冲击波物理与爆轰物理全国重点实验室稳定支持项目;计算物理全国重点实验室稳定支持项目;爆炸科学与技术国家重点实验室开放课题(北京理工大学)(KFJJ23-02M);国家重点研发计划(2020YFC2201100);中国博士后科学基金(2021M690392);BICE先进空间推进实验室和高效绿色航天推进技术北京工程研究中心(LabASP-2021-04)

Entropy increase characteristics of shock wave/plate laminar boundary layer interaction

Jiahui SONG1,2,3, Aiguo XU2,4,5, Long MIAO1,6(), Yugan LIAO1, Fuwen LIANG1, Feng TIAN1, Mingqing NIE1, Ningfei WANG1   

  1. 1.School of Aerospace Engineering,Beijing Institute of Technology,Beijing  100081,China
    2.National Key Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing  100088,China
    3.National Key Laboratory of Shock Wave and Detonation Physics,Mianyang  621900,China
    4.State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing  100081,China
    5.HEDPS,Center for Applied Physics and Technology,College of Engineering,Peking University,Beijing  100871,China
    6.Chongqing Innovation Center,Beijing Institute of Technology,Chongqing  404100,China
  • Received:2023-02-01 Revised:2023-03-01 Accepted:2023-07-23 Online:2023-11-15 Published:2023-08-11
  • Contact: Long MIAO E-mail:miaolong@bit.edu.cn
  • Supported by:
    National Natural Science Foundation of China(12172061);Foundation of National Key Laboratory of Shock Wave and Detonation Physics;Foundation of National Key Laboratory of Computational Physics;The Opening Project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology)(KFJJ23-02M);National Key Research and Development Program(2020YFC2201100);China Postdoctoral Science Foundation(2021M690392);Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(LabASP-2021-04)

摘要:

超声速流动中存在着复杂的激波/边界层干扰现象。在激波/边界层干扰中,激波引起的“波阻”和边界层引起的“摩擦阻力”是气动阻力的主要来源,而这两种阻力均与熵增直接相关,因而熵增是评估超声速流中气动阻力的关键参数。采用基于非平衡统计物理学的离散玻尔兹曼方法(DBM)对高马赫数规则反射及激波/层流平板边界层干扰问题进行了仿真研究,借助高阶非守恒动理学矩,DBM可以方便地捕捉黏性和热流等热力学非平衡效应,并定量化研究两者引起的熵产生率。结果表明:对于规则反射,反射激波中的非平衡强度强于入射激波;对于激波/层流平板边界层干扰,激波中黏性引起的熵产生率占主导,边界层中热流引起的熵产生率占主导,两种熵产生率的强度均随马赫数的增加而增强。研究结果可为评估进气道内的流动品质提供理论指导。

关键词: 超燃冲压发动机, 熵增, 非平衡特性, 离散玻尔兹曼方法, 激波/层流边界层干扰

Abstract:

There exist complex shock wave/boundary layer interaction phenomena in supersonic flow. The main sources of aerodynamic drag in scramjet engines are “friction drag” caused by boundary layer and “wave drag” caused by shock wave, both of which are directly related to entropy increase, so entropy increase is the key parameter to evaluate the aerodynamic drag. Discrete Boltzmann Modeling and Analysis Method (DBM) based on non-equilibrium statistical physics is used to simulate high mach number regular reflection and shock wave/laminar boundary layer interaction problem. With the help of high-order non-conserved kinetic moments, DBM can easily capture thermodynamic non-equilibrium effects such as viscosity and heat conduction, and quantify the entropy production rate caused by them. The results show that for regular reflection, the non-equilibrium intensity of the reflected shock wave is stronger than that of the incident shock wave. For shock wave/laminar boundary layer interaction, entropy production rate caused by viscosity is dominant in shock wave, and entropy production rate caused by heat conduction is dominant in boundary layer. The intensity of the two entropy production rates increases with the increase of Mach number. The research results can provide theoretical guidance for evaluating the flow quality in the inlet.

Key words: scramjet engine, entropy increase, non-equilibrium characteristics, discrete Boltzmann method, shock wave/laminar boundary layer interaction

中图分类号: