1 |
徐旭, 陈兵, 徐大军. 冲压发动机原理及技术[M]. 北京: 北京航空航天大学出版社, 2014.
|
|
XU X, CHEN B, XU D J. Principle and technology of ramjet engine[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2014 (in Chinese).
|
2 |
黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报, 2010, 31(5): 1259-1265.
|
|
HUANG W, LUO S B, WANG Z G. Key techniques and prospect of near-space hypersonic vehicle[J]. Journal of Astronautics, 2010, 31(5): 1259-1265 (in Chinese).
|
3 |
叶友达, 张涵信, 蒋勤学, 等. 近空间高超声速飞行器气动特性研究的若干关键问题[J]. 力学学报, 2018, 50(6): 1292-1310.
|
|
YE Y D, ZHANG H X, JIANG Q X, et al. Some key problems in the study of aerodynamic characteristics of near-space hypersonic vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1292-1310 (in Chinese).
|
4 |
孟宇鹏, 杨晖, 满延进. 高超声速进气道飞行器一体化设计技术的发展[J]. 气体物理, 2021, 6(4):66-83.
|
|
MENG Y P, YANG H, MAN Y J. Development of hypersonic Inlet-Vehicle integrative design technology[J]. Physics of Gases, 2021, 6(4):66-83 (in Chinese).
|
5 |
于达仁, 常军涛, 崔涛, 等. 超燃冲压发动机控制方法[J]. 推进技术, 2010, 31(6): 764-772.
|
|
YU D R, CHANG J T, CUI T, et al. Control method of scramjet engines[J]. Journal of Propulsion Technology, 2010, 31(6): 764-772 (in Chinese).
|
6 |
骆红朱. 复杂入口条件下超燃冲压发动机隔离段气动性能研究[D]. 南京: 南京航空航天大学, 2018.
|
|
LUO H Z. Flow performance study of scramjet isolator at distorted incoming flow conditions[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
|
7 |
HUANG W, WU H, YANG Y G, et al. Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows[J]. Acta Astronautica, 2020, 174: 103-122.
|
8 |
黄河峡. 背景激波系干扰下隔离段内激波串特性及其控制研究[D]. 南京: 南京航空航天大学, 2018.
|
|
HUANG H X. Behaviors of shock train in isolator with background shocks and its control [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
|
9 |
GUO X, SI T, ZHAI Z G, et al. Large-amplitude effects on interface perturbation growth in Richtmyer-Meshkov flows with reshock[J]. Physics of Fluids, 2022, 34(8): 082118.
|
10 |
WANG H, WANG H, ZHAI Z G, et al. Effects of obstacles on shock-induced perturbation growth[J]. Physics of Fluids, 2022, 34(8): 086112.
|
11 |
WANG W Z, WU Y, RONG M Z, et al. Theoretical computation studies for transport properties of air plasmas[J]. Acta Physica Sinica, 2012, 61(10): 105201.
|
12 |
袁军娅, 任翔, 蔡国飙, 等. 双锥/双楔流动中的高温气体效应仿真模拟[J]. 气体物理, 2022, 7(4): 10-18.
|
|
YUAN J Y, REN X, CAI G B, et al. Simulation of high temperature gas effects in high enthalpy double cone/wedge flows[J]. Physics of Gases, 2022, 7(4): 10-18 (in Chinese).
|
13 |
李祝飞. 高超声速进气道起动特性机理研究[D]. 合肥: 中国科学技术大学, 2013.
|
|
LI Z F. An investigating on starting characteristics of hypersonic inlets[D]. Hefei: University of Science and Technology of China, 2013 (in Chinese).
|
14 |
CHANG J T, LI N, XU K J, et al. Recent research progress on unstart mechanism, detection and control of hypersonic inlet[J]. Progress in Aerospace Sciences, 2017, 89: 1-22.
|
15 |
李楠. 超燃冲压发动机内激波串运动不稳定及控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
LI N. Investigation of the shock train instability and control method in Scramjet[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese).
|
16 |
BABINSKY H, HARVEY J. Shock wave-boundary-layer interactions[M]. Cambridge: Cambridge University Press, 2011.
|
17 |
GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72: 80-99.
|
18 |
HADJADJ A, PERROT Y, VERMA S. Numerical study of shock/boundary layer interaction in supersonic overexpanded nozzles[J]. Aerospace Science and Technology, 2015, 42: 158-168.
|
19 |
BAO Y, QIU R F, ZHOU K, et al. Study of shock wave/boundary layer interaction from the perspective of nonequilibrium effects[J]. Physics of Fluids, 2022, 34(4): 046109.
|
20 |
NEUENHAHN T, OLIVIER H. Influence of the wall temperature and the entropy layer effects on double wedge shock boundary layer interactions[C]∥ 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006: 8136.
|
21 |
BOROVOY V Y, EGOROV I V, SKURATOV A S, et al. Two-dimensional shock-wave/boundary-layer interaction in the presence of entropy layer[J]. AIAA Journal, 2013, 51(1): 80-93.
|
22 |
DÉLERY J, DUSSAUGE J P. Some physical aspects of shock wave/boundary layer interactions[J]. Shock Waves, 2009, 19(6): 453-468.
|
23 |
MAHESH K, LELE S K, MOIN P. The influence of entropy fluctuations on the interaction of turbulence with a shock wave[J]. Journal of Fluid Mechanics, 1997, 334: 353-379.
|
24 |
许爱国, 张玉东. 复杂介质动理学[M]. 北京: 科学出版社, 2022.
|
|
XU A G, ZHANG Y D. Complex media kinetics[M]. Beijing: Science Press, 2022 (in Chinese).
|
25 |
GAN Y B, XU A G, ZHANG G C, et al. Discrete Boltzmann trans-scale modeling of high-speed compressible flows[J]. Physical Review: E, 2018, 97(5): 053312.
|
26 |
QIU R F, ZHOU T, BAO Y, et al. Mesoscopic kinetic approach for studying nonequilibrium hydrodynamic and thermodynamic effects of shock wave, contact discontinuity, and rarefaction wave in the unsteady shock tube[J]. Physical Review: E, 2021, 103(5): 053113.
|
27 |
LIN C D, SU X L, ZHANG Y D. Hydrodynamic and thermodynamic nonequilibrium effects around shock waves: Based on a discrete Boltzmann method[J]. Entropy, 2020, 22(12): 1397.
|
28 |
ZHANG Y D, XU A G, ZHANG G C, et al. Kinetic modeling of detonation and effects of negative temperature coefficient[J]. Combustion and Flame, 2016, 173: 483-492.
|
29 |
ZHANG Y D, XU A G, ZHANG G C, et al. Entropy production in thermal phase separation: a kinetic-theory approach[J]. Soft Matter, 2019, 15(10): 2245-2259.
|
30 |
陈式刚. 非平衡统计力学[M]. 北京: 科学出版社, 2010.
|
|
CHEN S G. Non-equilibrium statistical mechanics[M]. Beijing: Science Press, 2010 (in Chinese).
|
31 |
沈青. 稀薄气体动力学[M]. 北京: 国防工业出版社, 2003.
|
|
SHEN Q. Rarefied gas dynamics[M]. Beijing: National Defense Industry Press, 2003 (in Chinese).
|
32 |
LI Z H, PENG A P, ZHANG H X, et al. Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations[J]. Progress in Aerospace Sciences, 2015, 74: 81-113.
|
33 |
刘畅, 徐昆. 离散时空直接建模思想及其在模拟多尺度输运中的应用[J]. 空气动力学学报, 2020, 38(2):197-216.
|
|
LIU C, XU K. Direct modeling methodology and its applications in multiscale transport process[J]. Acta Aerodynamica Sinica, 2020, 38(2):197-216 (in Chinese).
|
34 |
陈伟芳, 赵文文. 稀薄气体动力学矩方法及数值模拟[M]. 北京: 科学出版社, 2017.
|
|
CHEN W F, ZHAO W W. Moment equations and numerical methods for rarefied gas flows [M]. Beijing: Science Press, 2017 (in Chinese).
|
35 |
何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009.
|
|
HE Y L, WANG Y, LI Q. Lattice Boltzmann method: Theory and applications[M]. Beijing: Science Press, 2009 (in Chinese).
|
36 |
XU A G, ZHANG G C, ZHANG Y D. Discrete Boltzmann modeling of compressible flows[M]∥ Kinetic theory. Rijeka: InTech, 2018.
|
37 |
许爱国, 单奕铭, 陈锋, 等. 燃烧多相流的介尺度动理学建模研究进展[J]. 航空学报, 2021, 42(12): 52-68
|
|
XU A G, SHAN Y M, CHEN F, et al. Progress of mesoscale modeling and investigation of combustion multiphase flow[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 52-68 (in Chinese).
|
38 |
许爱国, 陈杰, 宋家辉, 等. 多相流系统的离散玻尔兹曼研究进展[J]. 空气动力学学报, 2021, 39(3):138-169.
|
|
XU A G, CHEN J, SONG J H, et al. Progress of discrete Boltzmann study on multiphase complex flows[J]. Acta Aerodynamica Sinica, 2021, 39(3): 138-169 (in Chinese).
|
39 |
许爱国, 宋家辉, 陈锋, 等. 基于相空间的复杂物理场建模与分析方法[J]. 计算物理, 2021, 38(6): 631-660.
|
|
XU A G, SONG J H, CHEN F, et al. Modeling and analysis methods for complex fields based on phase space[J]. Chinese Journal of Computational Physics, 2021, 38(6): 631-660 (in Chinese).
|
40 |
GAN Y B, XU A G, LAI H L, et al. Discrete Boltzmann multi-scale modelling of non-equilibrium multiphase flows[J]. Journal of Fluid Mechanics, 2022, 951: A8.
|
41 |
ZHANG D J, XU A G, ZHANG Y D, et al. Discrete Boltzmann modeling of high-speed compressible flows with various depths of non-equilibrium[J]. Physics of Fluids, 2022, 34(8): 086104.
|
42 |
ZHANG Y D, XU A G, ZHANG G C, et al. Discrete Boltzmann method for non-equilibrium flows: Based on Shakhov model[J]. Computer Physics Communications, 2019, 238: 50-65.
|
43 |
ZHANG Y D, XU A G, CHEN F, et al. Non-equilibrium characteristics of mass and heat transfers in the slip flow[J]. AIP Advances, 2022, 12(3): 035347.
|
44 |
XU A G, ZHANG G C, GAN Y B, et al. Lattice Boltzmann modeling and simulation of compressible flows[J]. Frontiers of Physics, 2012, 7(5): 582-600.
|
45 |
ZHANG Y D, XU A G, ZHANG G C, et al. Discrete Boltzmann method with Maxwell-type boundary condition for slip flow[J]. Communications in Theoretical Physics, 2018, 69(1): 77.
|
46 |
BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3): 511-525.
|
47 |
WIETING A R, HOLDEN M S. Experimental shock-wave interference heating on a cylinder at Mach 6 and 8[J]. AIAA Journal, 1989, 27(11): 1557-1565.
|