| [1] |
郑洁, 赵占文. 温热环境对复合材料结构承载能力影响试验研究[J]. 航空科学技术, 2017, 28(3): 55-58.
|
|
ZHENG J, ZHAO Z W. Experimental research on the influence of hygrothermal environment on compressive carrying capacity of composite stiffened plates[J]. Aeronautical Science & Technology, 2017, 28(3): 55-58 (in Chinese).
|
| [2] |
苏杰, 李亚智, 杨帆, 等. 复合材料连接件钉载分配与孔周应力解析计算[J]. 应用力学学报, 2015, 32(5): 717-723, 890.
|
|
SU J, LI Y Z, YANG F, et al. An analytical investigation on the pin-load and stress distributions in composite joints[J]. Chinese Journal of Applied Mechanics, 2015, 32(5): 717-723, 890 (in Chinese).
|
| [3] |
贾云超, 关志东, 宋晓君. 复合材料-金属机械连接性能研究[J]. 玻璃钢/复合材料, 2015(4): 66-70, 10.
|
|
JIA Y C, GUAN Z D, SONG X J. Study on performance of composite-metal mechanical joints[J]. Fiber Reinforced Plastics/Composites, 2015(4): 66-70, 10 (in Chinese).
|
| [4] |
张浩宇, 侯波, 何宇廷, 等. 航空复合材料-金属连接结构的拉伸性能及其渐进损伤[J]. 机械工程材料, 2017, 41(8): 87-92.
|
|
ZHANG H Y, HOU B, HE Y T, et al. Tensile property of aeronautical composite-metal joint structure and its progressive damage[J]. Materials for Mechanical Engineering, 2017, 41(8): 87-92 (in Chinese).
|
| [5] |
侯赤, 周银华, 全泓玮, 等. 混合结构中金属疲劳对层合板损伤的影响[J]. 西北工业大学学报, 2018, 36(1): 74-82.
|
|
HOU C, ZHOU Y H, QUAN H W, et al. The effect of metal on composites fatigue damage in mixed structure[J]. Journal of Northwestern Polytechnical University, 2018, 36(1): 74-82 (in Chinese).
|
| [6] |
魏冉, 刘龙权, 汪海. 复合材料-钛合金多钉连接结构疲劳试验研究[J]. 机械科学与技术, 2012, 31(12): 1997-2002.
|
|
WEI R, LIU L Q, WANG H. Experimental study of the fatigue performance in multi fastener composite-to-titanium single lap joints[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(12): 1997-2002 (in Chinese).
|
| [7] |
韩建, 汪远, 梁珩, 等. 民用飞机机身复材-金属壁板混合连接结构的试验与分析[J]. 应用力学学报, 2023, 40(4): 761-768.
|
|
HAN J, WANG Y, LIANG H, et al. Test and analysis of composite-metal fuselage panel hybrid connection structure of civil aircraft[J]. Chinese Journal of Applied Mechanics, 2023, 40(4): 761-768 (in Chinese).
|
| [8] |
SELLITTO A, SAPUTO S, RUSSO A, et al. Numerical-experimental investigation into the tensile behavior of a hybrid metallic-CFRP stiffened aeronautical panel[J]. Applied Sciences, 2020, 10(5): 1880.
|
| [9] |
GUERRERO J M, SASIKUMAR A, LLOBET J, et al. Experimental and virtual testing of a composite-aluminium aircraft wingbox under thermal loading[J]. Aerospace Science and Technology, 2023, 138: 108329.
|
| [10] |
GUERRERO J M, SASIKUMAR A, LLOBET J, et al. Testing and simulation of a composite-aluminium wingbox subcomponent subjected to thermal loading[J]. Composite Structures, 2022, 296: 115887.
|
| [11] |
YANG C, SUN W J, SENEVIRATNE W, et al. Thermally induced loads of fastened hybrid composite/aluminum structures[J]. Journal of Aircraft, 2008, 45(2): 569-580.
|
| [12] |
LEI K, WANG B W, WU J T, et al. Temperature-induced load of bolted hybrid composite/metal joint[C]∥ ICAS,2021.
|
| [13] |
KRADINOV V, BARUT A, MADENCI E, et al. Bolted double-lap composite joints under mechanical and thermal loading[J]. International Journal of Solids and Structures, 2001, 38(44-45): 7801-7837.
|
| [14] |
蔡启阳, 赵琪. 环境温度和间隙对复合材料-金属混合结构机械连接钉载分配的影响[J]. 复合材料学报, 2021, 38(12): 4228-4238.
|
|
CAI Q Y, ZHAO Q. Effects of temperature and clearance fit on the load distribution of composite-metal hybrid structures[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4228-4238 (in Chinese).
|
| [15] |
郭居上. 温度场中复合材料板与铝合金板钉接结构内应力研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 19-30.
|
|
GUO J S. Internal stress analysis of bolted joints composed of composte plate and aluminum plate in the thermal field[D]. Harbin: Harbin Institute of Technology, 2013: 19-30 (in Chinese) .
|
| [16] |
魏洪, 郑茂亮, 范瑞娟. 复合材料与金属结构连接热应力有限元分析[J]. 航空科学技术, 2015, 26(9): 33-36.
|
|
WEI H, ZHENG M L, FAN R J. Finite element analysis on thermal stress of the connection structure between composite and metal sheet[J]. Aeronautical Science & Technology, 2015, 26(9): 33-36 (in Chinese).
|
| [17] |
邓文亮, 唐虎, 成竹. 温度对复材与金属混合结构钉载分配的影响[J]. 工程与试验, 2018, 58(3): 27-30.
|
|
DENG W L, TANG H, CHENG Z. Influence of temperature on nail load distribution of composite and metal structures[J]. Engineering & Test, 2018, 58(3): 27-30 (in Chinese).
|
| [18] |
杨俊清. 金属与复材混杂连接结构的热应力研究[J]. 民用飞机设计与研究, 2022(2): 15-20.
|
|
YANG J Q. Study on thermal stress of hybrid joint structure of composite and metal[J]. Civil Aircraft Design & Research, 2022(2): 15-20 (in Chinese).
|
| [19] |
COMAN C D, CONSTANTINESCU D M. Temperature effects on joint strength and failure modes of hybrid aluminum-composite countersunk bolted joints[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233(11): 2204-2218.
|
| [20] |
SASIKUMAR A, GUERRERO J M, QUINTANAS-COROMINAS A, et al. Numerical study to understand thermo-mechanical effects on a composite-aluminium hybrid bolted joint[J]. Composite Structures, 2021, 275: 114396.
|
| [21] |
胡俊山, 张开富. 力热耦合的复合材料干涉连接结构松弛演化与失效机理[J]. 机械工程学报, 2022, 58(1): 60.
|
|
HU J S, ZHANG K F. Relaxation evolution and failure mechanism of composite interference connection structure with mechanical and thermal coupling[J]. Journal of Mechanical Engineering, 2022, 58(1): 60 (in Chinese).
|
| [22] |
高阳. 某型飞机中央翼关键连接区混杂结构试验仿真与分析[D]. 南京: 南京航空航天大学, 2020.
|
|
GAO Y. Test simulation and analysis of the hybrid structures in the critical connection area of an aircraft’s central wing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese).
|
| [23] |
范景峰, 程小全, 王松伟, 等. 温度对多钉连接CCF300/GW-300层合板拉伸性能的影响[J]. 高科技纤维与应用, 2014, 39(6): 54-57, 66.
|
|
FAN J F, CHENG X Q, WANG S W, et al. Effect of temperature on tensile properties of CCF-300/GW-300 laminates with multiple bolted joints[J]. Hi-Tech Fiber & Application, 2014, 39(6): 54-57, 66 (in Chinese).
|
| [24] |
张娇蕊, 山美娟, 黄伟, 等. 湿热环境对CFRP复合材料-铝合金螺栓连接结构静力失效的影响[J]. 复合材料学报, 2021, 38(7): 2224-2233.
|
|
ZHANG J R, SHAN M J, HUANG W, et al. Effects of hygrothermal environment on quasi-static failure of CFRP compositealuminum alloy bolted joints[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2224-2233 (in Chinese).
|
| [25] |
阙权庆. C/SiC复合材料螺栓连接结构热力耦合及拉伸强度分析[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
|
QUE Q Q. Thermal coupling and tensile strength analysis of C/SiC composite bolted connection structures[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese).
|
| [26] |
汪浩成. 温湿度对T700S/# 2510和G30-500/TC275复合材料力学性能的影响[D]. 南昌: 南昌大学, 2014: 64-66.
|
|
WANG H C. Effect of temperature and humidity on mechanical properties of T700S/#2515 and G30-500/TC275 composites[D]. Nanchang: Nanchang University, 2014: 64-66 (in Chinese).
|
| [27] |
罗健, 石建军, 贾彬, 等. 低温暴露对碳纤维/环氧树脂复合材料拉伸力学性能的影响[J]. 复合材料学报, 2020, 37(12): 3091-3101.
|
|
LUO J, SHI J J, JIA B, et al. Effect of low temperature exposure on tensile mechanical properties of carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3091-3101 (in Chinese).
|
| [28] |
刘梦媛, 刘东勋. T700/3234层合板力学性能的研究[J]. 纤维复合材料, 2013, 30(1): 16-18, 11.
|
|
LIU M Y, LIU D X. Study on mechanical properties of T700/3234 laminate[J]. Fiber Composites, 2013, 30(1): 16-18, 11 (in Chinese).
|
| [29] |
陈鼎, 陈振华. 铝合金在低温下的力学性能[J]. 宇航材料工艺, 2000, 30(4): 1-7.
|
|
CHEN D, CHEN Z H. Mechanical properties of pure aluminum alloys at cryogenic temperatures[J]. Aerospace Materials & Technology, 2000, 30(4): 1-7 (in Chinese).
|