[1] 中国人民解放军总装备部. 军用飞机结构完整性大纲:GJB 775A-2012[S]. 北京:中国人民解放军总装备部, 2012. General Equipment Department of People's Liberation Army of China. Military aircraft structural integrity program:GJB 775A-2012[S]. Beijing:General Equipment Department of People's Liberation Army of China, 2012(in Chinese). [2] FORMAN R G, KEARNEY V E, ENGLE R M. Numerical analysis of crack propagation in cyclic-loaded structures[J]. Journal of Basic Engineering, 1967, 89(3):459-463. [3] PRIDDLE E K. High cycle fatigue crack propagation under random and constant amplitude loadings[J]. International Journal of Pressure Vessels and Piping, 1976, 4(2):89-117. [4] 鲁嵩嵩. 激光熔化沉积TC11钛合金裂纹扩展行为研究[D]. 北京:北京航空航天大学,2017:25-33. LU S S. Study of fatigue crack growth behaviour in laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy[D]. Beijing:Beihang University, 2017:25-33(in Chinese). [5] WANG K, BAO R, LIU D, et al. Plastic anisotropy of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy[J]. Materials Science and Engineering:A, 2019, 746:276-289. [6] DOWLING N E, IYYER N S. Fatigue crack growth and closure at high cyclic strains[J]. Materials Science and Engineering, 1987, 96:99-107. [7] PARK H B, KIM K M, LEE B W. Plastic zone size in fatigue cracking[J]. International Journal of Pressure Vessels and Piping, 1996, 68(3):279-285. [8] SHI K K, CAI L X, QI S, et al. A prediction model for fatigue crack growth using effective cyclic plastic zone and low cycle fatigue properties[J]. Engineering Fracture Mechanics, 2016, 158:209-219. [9] ZHENG X, CUI H, SU X, et al. Numerical modeling of fatigue crack propagation based on the theory of critical distances[J]. Engineering Fracture Mechanics, 2013, 114:151-165. [10] SHI Y W, SUN S Y, MURAKAWA H, et al. Finite element analysis on relationships between the J-integral and CTOD for stationary cracks in welded tensile specimens[J]. International Journal of Pressure Vessels and Piping, 1998, 75(3):197-202. [11] WELLS A A. The application of fracture mechanics to yielding materials[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1965, 285:34-45. [12] RICE J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks[J]. Journal of Applied Mechanics, 1968, 35(2):379-386. [13] SAMADIAN K, HERTELÉ S, DE WAELE W. Measurement of CTOD along a surface crack by means of digital image correlation[J]. Engineering Fracture Mechanics, 2019, 205:470-485. [14] KAWABATA T, TAGAWA T, SAKIMOTO T, et al. Proposal for a new CTOD calculation formula[J]. Engineering Fracture Mechanics, 2016, 159:16-34. [15] WERNER K. The fatigue crack growth rate and crack opening displacement in 18G2A-steel under tension[J]. International Journal of Fatigue, 2012, 39:25-31. [16] DONG Q, YANG P, XU G, et al. Mechanisms and modeling of low cycle fatigue crack propagation in a pressure vessel steel Q345[J]. International Journal of Fatigue, 2016, 89:2-10. [17] ANTUNES F V, SERRANO S, BRANCO R, et al. Fatigue crack growth in the 2050-T8 aluminium alloy[J]. International Journal of Fatigue, 2018, 115:79-88. [18] ANTUNES F V, BRANCO R, PRATES P A, et al. Fatigue crack growth modelling based on CTOD for the 7050-T6 alloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(8):1309-1320. [19] ANTUNES F V, FERREIRA M S C, BRANCO R, et al. Fatigue crack growth versus plastic CTOD in the 304L stainless steel[J]. Engineering Fracture Mechanics, 2019, 214:487-503. [20] WU Y Z, BAO R, ZHANG S Q. In-situ measurement of near-tip fatigue crack displacement variation in laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Procedia Structural Integrity, 2018, 13:890-895. [21] 张婷. 2324-T39铝合金疲劳裂纹扩展行为研究[D]. 北京:北京航空航天大学,2016:60-62. ZHANG T. Study on the fatigue crack growth behaviour of 2324-T39 aluminum alloy[D]. Beijing:Beihang University, 2016:60-62(in Chinese). [22] MADURO L P, BAPTISTA C A R P, TORRES M A S, et al. Modeling the growth of LT and TL-oriented fatigue cracks in longitudinally and transversely pre-strained Al2524-T3 alloy[J]. Procedia Engineering, 2011, 10:1214-1219. [23] US Department of Defense. Military handbook:Metallic materials and elements for aerospace vehicle structures[M]. Washington, D.C.:US Department of Defense, 2003. [24] ZHU Y Y, LIU D, TIAN X J, et al. Characterization of microstructure and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Materials & Design, 2014, 56:445-453. [25] ASTM International. Standard test method for measurement of fatigue crack growth rates:ASTM E647-15[S]. West Conshohocken:ASTM International, 2015. [26] VASCO-OLMO J M, DÍAZ F A, ANTUNES F V, et al. Characterisation of fatigue crack growth using digital image correlation measurements of plastic CTOD[J]. Theoretical and Applied Fracture Mechanics, 2019, 101:332-341. |