[1] BUMPS E S, KESSLER H D, HANSEN M. The titanium-oxygen system[J]. Transactions of the Metallurgical Society of AIME, 1953, 45:1008-1028. [2] WANG G F, LI J H, LV K, et al. Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration[J]. Scientific Reports, 2016, 6:31769. [3] KUMAR S, NARAYANAN T S N S, RAMAN S G S, et al. Thermal oxidation of CP Ti-An electrochemical and structural characterization[J]. Materials Characterization, 2010, 61(6):589-597. [4] DONG H, BLOYCE A, MORTON P H, et al. Surface engineering to improve tribological performance of Ti-6Al-4V[J]. Surface Engineering, 1997, 13(5):402-406. [5] PARK Y J, SONG H J, KIM I, et al. Surface characteristics and bioactivity of oxide film on titanium metal formed by thermal oxidation[J]. Journal of Materials Science:Materials in Medicine, 2007, 18(4):565-575. [6] ZHANG M M, CHENG Y X, XIN L, et al. Cyclic oxidation behaviour of Ti/TiAlN composite multilayer coatings deposited on titanium alloy[J]. Corrosion Science, 2020, 166:108476. [7] KUMAR A, KUSHWAHA M K, ISRAR M, et al. Evaluation of mechanical properties of titanium alloy after thermal oxidation process[J]. Transactions of the Indian Institute of Metals, 2020, 73(5):1373-1381. [8] LAO X S, ZHAO X F, LIU Y, et al. Experimental study on friction characteristics of micro-arc oxidation modified layer on titanium alloy surface[C]//The 8th International Conference on Nanostructures, Nanomaterials and Nanoengineering. Stafa-Zurich:Trans Tech Publications Ltd, 2020:44-49. [9] DONG H, LI X Y. Oxygen boost diffusion for the deep-case hardening of titanium alloys[J]. Materials Science and Engineering:A, 2000, 280(2):303-310. [10] ZABLER S. Interstitial oxygen diffusion hardening-A practical route for the surface protection of titanium[J]. Materials Characterization, 2011, 62(12):1205-1213. [11] 刘勇, 杨德庄, 何世禹, 等. Ti-6Al-4V合金表面的热氧化/真空扩散处理[J]. 中国有色金属学报, 2003, 13(1):177-180. LIU Y, YANG D Z, HE S Y, et al. Thermal oxidation/vacuum diffusion treatment on surface of titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(1):177-180(in Chinese). [12] 严伟, 王小祥. 热氧化处理钛表面渗氧层的组织与性能研究[J]. 稀有金属材料与工程, 2005, 34(3):471-474. YAN W, WANG X X. Characterization of the surface oxygen-diffusion zone of the thermally oxidized titanium[J]. Rare Metal Materials and Engineering, 2005, 34(3):471-474(in Chinese). [13] 王娅婷, 林乃明, 唐宾. 钛及钛合金热氧化工艺的研究现状[J]. 腐蚀与防护, 2014, 35(10):965-970. WANG Y T, LIN N M, TANG B. Development of thermal oxidation of titanium and titanium alloys[J]. Corrosion & Protection, 2014, 35(10):965-970(in Chinese). [14] 秦建峰, 王馨舶, 邹娇娟, 等. 热氧化提高钛及钛合金表面性能的研究进展[J]. 表面技术, 2017, 46(1):1-8. QIN J F, WANG X B, ZOU J J, et al. Research progress of thermal oxidation effect on improving surface properties of titanium and titanium alloy[J]. Surface Technology, 2017, 46(1):1-8(in Chinese). [15] 郑锋, 程挺宇, 张巧云, 等. 高能喷丸表面纳米化技术在纯钛中的应用效果[J]. 稀有金属与硬质合金, 2009, 37(4):61-63. ZHENG F, CHENG T Y, ZHANG Q Y, et al. Application effect of surface nanocrystallization by high-energy shot peening on pure titanium[J]. Rare Metals and Cemented Carbides, 2009, 37(4):61-63(in Chinese). [16] LIU Y G, LI H M, LI M Q. Roles for shot dimension, air pressure and duration in the fabrication of nanocrystalline surface layer in TC17 alloy via high energy shot peening[J]. Journal of Manufacturing Processes, 2020, 56:562-570. [17] LI C, CUI W F, ZHANG Y S. Surface self-nanocrystallization of α+β titanium alloy by surface mechanical grinding treatment[J]. Metals & Materials International, 2017, 23(3):512-518. [18] ALTENBERGER I, STACH E A, LIU G, et al. An in situ transmission electron microscope study of the thermal stability of near-surface microstructures induced by deep rolling and laser-shock peening[J]. Scripta Materialia, 2003, 48(12):1593-1598. [19] SUWAS S, BEAUSIR B, TÓTH L S, et al. Texture evolution in commercially pure titanium after warm equal channel angular extrusion[J]. Acta Materialia, 2011, 59(3):1121-1133. [20] MILNER J L, ABU-FARHA F, BUNGET C, et al. Grain refinement and mechanical properties of CP-Ti processed by warm accumulative roll bonding[J]. Materials Science and Engineering:A, 2013, 561:109-117. [21] WANG Y M, CHENG J P, YANG H P, et al. Influence of microstructure on shot peening effects of Ti-6Al-4V alloy[J]. Materials Science Forum, 2018, 921:177-183. [22] UNAL O, CAHIT KARAOGLANLI A, VAROL R, et al. Microstructure evolution and mechanical behavior of severe shot peened commercially pure titanium[J]. Vacuum, 2014, 110:202-206. [23] HUANG J, ZHANG K M, JIA Y F, et al. Effect of thermal annealing on the microstructure, mechanical properties and residual stress relaxation of pure titanium after deep rolling treatment[J]. Journal of Materials Science & Technology, 2019, 35(3):409-417. [24] FAN Z G, XIE C Y. Phase transformation behaviors of Ti-50.9 at.% Ni alloy after equal channel angular extrusion[J]. Materials Letters, 2008, 62(6-7):800-803. [25] LI J, ZHOU J Z, FENG A X, et al. Investigation on mechanical properties and microstructural evolution of TC6 titanium alloy subjected to laser peening at cryogenic temperature[J]. Materials Science and Engineering:A, 2018, 734:291-298. [26] WANG Q, YIN Y F, SUN Q Y, et al. Gradient nano microstructure and its formation mechanism in pure titanium produced by surface rolling treatment[J]. Journal of Materials Research, 2014, 29(4):569-577. [27] ZHU L H, GUAN Y J, LIN J, et al. A nanocrystalline-amorphous mixed layer obtained by ultrasonic shot peening on pure titanium at room temperature[J]. Ultrasonics Sonochemistry, 2018, 47:68-74. [28] AGRAWAL R K, PANDEY V, BARHANPURKAR-NAIK A, et al. Effect of ultrasonic shot peening duration on microstructure, corrosion behavior and cell response of cp-Ti[J]. Ultrasonics, 2020, 104:106110. [29] DAI S J, ZHU Y T, HUANG Z W. Microstructure evolution and strengthening mechanisms of pure titanium with nano-structured surface obtained by high energy shot peening[J]. Vacuum, 2016, 125:215-221. [30] WEN M, WEN C E, HODGSON P, et al. Thermal oxidation behaviour of bulk titanium with nanocrystalline surface layer[J]. Corrosion Science, 2012, 59:352-359. [31] ZHANG B S, WANG J Y, ZHU S S, et al. Effects of ECAP on the formation and tribological properties of thermal oxidation layers on a pure titanium surface[J]. Oxidation of Metals, 2019, 91(3-4):483-494. [32] JIA Y F, PAN R J, ZHANG P Y, et al. Enhanced surface strengthening of titanium treated by combined surface deep-rolling and oxygen boost diffusion technique[J]. Corrosion Science, 2019, 157:256-267. [33] KIKUCHI S, KOMOTORI J. Effect of fine particle peening on atmospheric oxidation behavior of Ti-6Al-4V alloy[J]. Journal of the Japan Institute of Metals and Materials, 2015, 80(2):114-120. [34] LIU J, SUSLOV S, LI S X, et al. Effects of ultrasonic nanocrystal surface modification on the thermal oxidation behavior of Ti6Al4V[J]. Surface and Coatings Technology, 2017, 325:289-298. [35] ZHANG B S, WANG J Y, ZHU S S, et al. Fabrication and tribological properties of gradient fine-grained oxygen-boosting layer on ECAP-treated pure titanium surface[J]. Surface Review and Letters, 2019, 26(6):1850199. [36] DENG Z N, LIU J S, HE Y, et al. Synthesis and properties of hydroxyapatite-containing porous titania coating on titanium by ultrasonic shot peening and micro-arc oxidation[J]. Advanced Materials Research, 2013, 690-693:2081-2084. [37] KANJER A, OPTASANU V, MARCO DE LUCAS M C, et al. Improving the high temperature oxidation resistance of pure titanium by shot-peening treatments[J]. Surface and Coatings Technology, 2018, 343:93-100. [38] KANJER A, LAVISSE L, OPTASANU V, et al. Effect of laser shock peening on the high temperature oxidation resistance of titanium[J]. Surface and Coatings Technology, 2017, 326:146-155. [39] PASTOREK F, HADZIMA B, FINTOVÁ S, et al. Influence of anodic oxidation on the polarization resistance of Ti6Al4V alloy after shot peening[J]. Materials Science Forum, 2014, 811:59-62. [40] WEN M, WEN C E, HODGSON P, et al. Improvement of the biomedical properties of titanium using SMAT and thermal oxidation[J]. Colloids and Surfaces B:Biointerfaces, 2014, 116:658-665. [41] MADHAVI Y, RAMA KRISHNA L, NARASAIAH N. Influence of micro arc oxidation coating thickness and prior shot peening on the fatigue behavior of 6061-T6 Al alloy[J]. International Journal of Fatigue, 2019, 126:297-305. [42] 炊鹏飞, 贺志荣, 张锋刚, 等. 纯钛表面纳米化预处理对氧化膜结构的影响[J]. 金属热处理, 2017, 42(10):145-148. CHUI P F, HE Z R, ZHANG F G, et al. Effect of surface nanocrystallization pretreatment on microstructure of pure titanium oxidation film[J]. Heat Treatment of Metals, 2017, 42(10):145-148(in Chinese). [43] THOMAS M, LINDLEY T, RUGG D, et al. The effect of shot peening on the microstructure and properties of a near-alpha titanium alloy following high temperature exposure[J]. Acta Materialia, 2012, 60(13-14):5040-5048. [44] BAILEY R, SUN Y. Unlubricated sliding friction and wear characteristics of thermally oxidized commercially pure titanium[J]. Wear, 2013, 308(1-2):61-70. [45] ANIOŁEK K. Structure and properties of titanium and the Ti-6Al-7Nb alloy after isothermal oxidation[J]. Surface Engineering, 2020, 36(8):847-858. [46] ZHU L H, GUAN Y J, LIN J, et al. The enhanced thermal stability of the nanocrystalline-amorphous composite layer on pure titanium induced by ultrasonic shot peening[J]. Journal of Alloys and Compounds, 2019, 791:1063-1069. [47] KANJER A, OPTASANU V, LAVISSE L, et al. Influence of mechanical surface treatment on high-temperature oxidation of pure titanium[J]. Oxidation of Metals, 2017, 88(3-4):383-395. [48] HARADA Y, SAEKI Y, HATTORI K. Fatigue improvement of titanium alloy by compound peening using microshot and ultrasonic vibration[J]. The Proceedings of Conference of Kansai Branch, 2017, 92:503. [49] ZHENG H Z, GUO S H, LUO Q H, et al. Effect of shot peening on microstructure, nanocrystallization and microhardness of Ti-10V-2Fe-3Al alloy surface[J]. Journal of Iron and Steel Research International, 2019, 26(1):52-58. [50] GIL F J, Aparicio C, Planell, J A. Effect of oxygen content on grain growth kinetics of titanium[J]. Journal of Materials Synthesis and Processing, 2002, 10(5):263-266. [51] CHEN Y X, WANG J C, GAO Y K, et al. Effect of shot peening on fatigue performance of Ti2AlNb intermetallic alloy[J]. International Journal of Fatigue, 2019, 127:53-57. [52] THOMAS M, JACKSON M. The role of temperature and alloy chemistry on subsurface deformation mechanisms during shot peening of titanium alloys[J]. Scripta Materialia, 2012, 66(12):1065-1068. [53] ZHANG Y, MA G R, ZHANG X C, et al. Thermal oxidation of Ti-6Al-4V alloy and pure titanium under external bending strain:Experiment and modelling[J]. Corrosion Science, 2017, 122:61-73. [54] XU L, DING J N, HUANG Z, et al. The effect of current density to surface morphology and component of micro-arc oxidization ceramic coating of pure titanium[J]. Materials Science Forum, 2016, 852:992-999. [55] JIN F Y, CHU P K, WANG K, et al. Thermal stability of titania films prepared on titanium by micro-arc oxidation[J]. Materials Science and Engineering:A, 2008, 476(1-2):78-82. [56] AMANOV A, PYUN Y S. Local heat treatment with and without ultrasonic nanocrystal surface modification of Ti-6Al-4V alloy:Mechanical and tribological properties[J]. Surface and Coatings Technology, 2017, 326:343-354. [57] KUMAR S, CHATTOPADHYAY K, SINGH V. Optimization of the duration of ultrasonic shot peening for enhancement of fatigue life of the alloy Ti-6Al-4V[J]. Journal of Materials Engineering and Performance, 2020, 29(2):1214-1224. [58] GARCÍA-ALONSO M C, SALDAÑA L, VALLÉS G, et al. In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy[J]. Biomaterials, 2003, 24(1):19-26. [59] KUMAR S, NARAYANAN T S N S, RAMAN S G S, et al. Thermal oxidation of CP Ti-An electrochemical and structural characterization[J]. Materials Characterization, 2010, 61(6):589-597. |