1 |
冯振宇, 傅博宇, 解江, 等. 爆炸冲击载荷下机身壁板的动态响应[J]. 航空学报, 2022, 43(6): 525513.
|
|
FENG Z Y, FU B Y, XIE J, et al. Dynamic response of fuselage panel under explosive impact load[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525513 (in Chinese).
|
2 |
刘宗兴, 刘军, 李维娜. 爆炸冲击载荷下典型机身结构动响应及破坏[J]. 航空学报, 2021, 42(2): 224252.
|
|
LIU Z X, LIU J, LI W N. Dynamic response and failure of typical fuselage structure under blast impact load[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 224252 (in Chinese).
|
3 |
ABDULLAH N A Z, SANI M S M, SALWANI M S, et al. A review on crashworthiness studies of crash box structure[J]. Thin-Walled Structures, 2020, 153: 106795.
|
4 |
JIA B, RUSINEK A, XIAO X K, et al. Simple shear behavior of 2024-T351 aluminum alloy over a wide range of strain rates and temperatures: Experiments and constitutive modeling[J]. International Journal of Impact Engineering, 2021, 156: 103972.
|
5 |
JI C, LI Z G, LIU J G. Development of an improved MMC-based fracture criterion characterizing the anisotropic and strain rate-dependent behavior of 6061-T5 aluminum alloy[J]. Mechanics of Materials, 2020, 150: 103598.
|
6 |
邹学锋, 潘凯, 燕群, 等. 多场耦合环境下高超声速飞行器结构动强度问题综述[J]. 航空科学技术, 2020, 31(12): 3-15.
|
|
ZOU X F, PAN K, YAN Q, et al. Overview of dynamic strength of hypersonic vehicle structure in multi-field coupling environment[J]. Aeronautical Science & Technology, 2020, 31(12): 3-15 (in Chinese).
|
7 |
ZANCHETTA B D, SILVA V K DA, SORDI V L, et al. Effect of asymmetric rolling under high friction coefficient on recrystallization texture and plastic anisotropy of AA1050 alloy[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(11): 2262-2272.
|
8 |
陈跃良, 张柱柱, 卞贵学, 等. 高应变率条件下38CrMoAl钢的动态力学行为及失效模型[J]. 航空学报, 2020, 41(10): 423709.
|
|
CHEN Y L, ZHANG Z Z, BIAN G X, et al. Dynamic mechanical behavior and failure model of 38CrMoAl steel under high strain rate[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 423709 (in Chinese).
|
9 |
BHUJANGRAO T, FROUSTEY C, IRIONDO E, et al. Review of intermediate strain rate testing devices[J]. Metals, 2020, 10(7): 894.
|
10 |
FIELD J E, WALLEY S M, PROUD W G, et al. Review of experimental techniques for high rate deformation and shock studies[J]. International Journal of Impact Engineering, 2004, 30(7): 725-775.
|
11 |
KIMM J S, BERGMANN J A, WÖSTE F, et al. Deformation behavior of 42CrMo4 over a wide range of temperatures and strain rates in Split-Hopkinson pressure bar tests[J]. Materials Science and Engineering: A, 2021, 826: 141953.
|
12 |
ZHAO Z Q, LIU P, DANG H Y, et al. Effects of loading rate and loading direction on the compressive failure behavior of a 2D triaxially braided composite[J]. International Journal of Impact Engineering, 2021, 156: 103928.
|
13 |
NUREL B, NAHMANY M, FRAGE N, et al. Split Hopkinson pressure bar tests for investigating dynamic properties of additively manufactured AlSi10Mg alloy by selective laser melting[J]. Additive Manufacturing, 2018, 22: 823-833.
|
14 |
IRAUSQUÍN I, PÉREZ-CASTELLANOS J L, MIRA⁃ NDA V, et al. Evaluation of the effect of the strain rate on the compressive response of a closed-cell aluminium foam using the split Hopkinson pressure bar test[J]. Materials & Design, 2013, 47: 698-705.
|
15 |
CHEN W, ZHANG B, FORRESTAL M J. A split Hopkinson bar technique for low-impedance materials[J]. Experimental Mechanics, 1999, 39(2): 81-85.
|
16 |
王维斌, 索涛, 郭亚洲, 等. 电磁霍普金森杆实验技术及研究进展[J]. 力学进展, 2021, 51(4): 729-754.
|
|
WANG W B, SUO T, GUO Y Z, et al. Experimental technique and research progress of electromagnetic Hopkinson bar[J]. Advances in Mechanics, 2021, 51(4): 729-754 (in Chinese).
|
17 |
邹正平, 张猛, 郎利辉. 基于三维数字图像相关法的管材胀形试验[J]. 航空学报, 2022, 43(12): 425989.
|
|
ZOU Z P, ZHANG M, LANG L H. Tube bulging test based on 3D digital image correlation method[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 425989 (in Chinese).
|
18 |
JANELIUKSTIS R, CHEN X. Review of digital image correlation application to large-scale composite structure testing[J]. Composite Structures, 2021, 271: 114143.
|
19 |
XU Y W, BAO R. Residual stress determination in friction stir butt welded joints using a digital image correlation-aided slitting technique[J]. Chinese Journal of Aeronautics, 2017, 30(3): 1258-1269.
|
20 |
SUR F, BLAYSAT B, GRÉDIAC M. Determining displacement and strain maps immune from aliasing effect with the grid method[J]. Optics and Lasers in Engineering, 2016, 86: 317-328.
|
21 |
GRÉDIAC M, SUR F, BLAYSAT B. The grid method for In-plane displacement and strain measurement: A review and analysis[J]. Strain, 2016, 52(3): 205-243.
|
22 |
ZHAO G Q, YU X Q, ZENG Q L, et al. Evolution of local deformation field inside adiabatic shear band of 1018 steel studied using digital image correlation with micro-speckles[J]. Extreme Mechanics Letters, 2022, 54: 101769.
|
23 |
PAN B, YU L P, YANG Y Q, et al. Full-field transient 3D deformation measurement of 3D braided composite panels during ballistic impact using single-camera high-speed stereo-digital image correlation[J]. Composite Structures, 2016, 157: 25-32.
|
24 |
TIWARI V, SUTTON M A, MCNEILL S R, et al. Application of 3D image correlation for full-field transient plate deformation measurements during blast loading[J]. International Journal of Impact Engineering, 2009, 36(6): 862-874.
|
25 |
JUNGSTEDT E, ÖSTLUND S, BERGLUND L A. Transverse fracture toughness of transparent wood biocomposites by FEM updating with cohesive zone fracture modeling[J]. Composites Science and Technology, 2022, 225: 109492
|
26 |
JUNGSTEDT E, OLIAEI E, LI L W, et al. Mechanical behavior of all-lignocellulose composites—comparing micro-and nanoscale fibers using strain field data and FEM updating[J]. Composites Part A: Applied Science and Manufacturing, 2022, 161: 107095.
|
27 |
HAO Z Q, JI X H, DENG L L, et al. Measurement of multiple mechanical properties for polymer composites using digital image correlation at elevated temperatures[J]. Materials & Design, 2021, 198: 109349.
|
28 |
ZHAO J Y, DONG J, LIU Z W, et al. Characterization method of mechanical properties of rubber materials based on stereo finite-element-model updating[J]. Polymer Testing, 2019, 79: 106015.
|
29 |
GERBIG D, BOWER A, SAVIC V, et al. Coupling digital image correlation and finite element analysis to determine constitutive parameters in necking tensile specimens[J]. International Journal of Solids and Structures, 2016, 97-98: 496-509.
|
30 |
ZALETELJ K, SLAVIČ J, BOLTEŽAR M. Full-field DIC-based model updating for localized parameter identification[J]. Mechanical Systems and Signal Processing, 2022, 164: 108287.
|
31 |
WANG W Z, MOTTERSHEAD J E, IHLE A, et al. Finite element model updating from full-field vibration measurement using digital image correlation[J]. Journal of Sound and Vibration, 2011, 330(8): 1599-1620.
|
32 |
PIERRON F, GRÉDIAC M. The linear virtual fields method[M]. New York: Springer, 2012: 57-106.
|
33 |
MARTINS J M P, THUILLIER S, ANDRADE-CAMPOS A. Calibration of a modified Johnson-Cook model using the Virtual Fields Method and a heterogeneous thermo-mechanical tensile test[J]. International Journal of Mechanical Sciences, 2021, 202-203: 106511.
|
34 |
KIM C, KIM J H, LEE M G. A virtual fields method for identifying anisotropic elastic constants of fiber reinforced composites using a single tension test: Theory and validation[J]. Composites Part B: Engineering, 2020, 200: 108338.
|
35 |
FU J W, BARLAT F, KIM J H, et al. Application of the virtual fields method to the identification of the homogeneous anisotropic hardening parameters for advanced high strength steels[J]. International Journal of Plasticity, 2017, 93: 229-250.
|
36 |
ROSSI M, PIERRON F, ŠTAMBORSKÁ M. Application of the virtual fields method to large strain anisotropic plasticity[J]. International Journal of Solids and Structures, 2016, 97-98: 322-335.
|
37 |
FLETCHER L, DAVIS F, DREUILHE S, et al. High strain rate elasto-plasticity identification using the image-based inertial impact (IBII) test part 1: Error quantification[J]. Strain, 2021, 57(2): e12375.
|
38 |
FU J W, ZHU K Y, NIE X F, et al. Inertia-based identification of elastic anisotropic properties for materials undergoing dynamic loadings using the virtual fields method and heterogeneous impact tests[J]. Materials & Design, 2021, 203: 109594.
|
39 |
KOOHBOR B, KIDANE A, SUTTON M A, et al. Analysis of dynamic bending test using ultra high speed DIC and the virtual fields method[J]. International Journal of Impact Engineering, 2017, 110: 299-310.
|
40 |
PIERRON F, ZHU H, SIVIOUR C. Beyond Hopkinson’s bar[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372(2023): 20130195.
|
41 |
HILL R, OROWAN E. A theory of the yielding and plastic flow of anisotropic metals[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1948, 193(1033): 281-297.
|
42 |
付佳伟, 马臻, 聂祥樊, 等. 基于虚场法的铝合金各向异性屈服及硬化属性参数同步表征[J]. 机械工程学报, 2021, 57(20): 68-78, 88.
|
|
FU J W, MA Z, NIE X F, et al. Identification of the anisotropic yield and hardening constitutive parameters for aluminum alloys using the virtual fields method[J]. Journal of Mechanical Engineering, 2021, 57(20): 68-78, 88 (in Chinese).
|
43 |
FU J W, XIE W W, ZHOU J M, et al. A method for the simultaneous identification of anisotropic yield and hardening constitutive parameters for sheet metal forming[J]. International Journal of Mechanical Sciences, 2020, 181: 105756.
|
44 |
SUTTON M A, DENG X, LIU J, et al. Determination of elastic-plastic stresses and strains from measured surface strain data[J]. Experimental Mechanics, 1996, 36(2): 99-112.
|
45 |
FLETCHER L, DAVIS F, DREUILHE S, et al. High strain rate elasto-plasticity identification using the image-based inertial impact (IBII) test part 2: Experimental validation[J]. Strain, 2021, 57(2): e12374.
|
46 |
CHEN G, LU L P, REN C Z, et al. Temperature dependent negative to positive strain rate sensitivity and compression behavior for 2024-T351 aluminum alloy[J]. Journal of Alloys and Compounds, 2018, 765: 569-585.
|
47 |
BRUSH D O, ALMROTH B O, HUTCHINSON J W. Buckling of bars, plates, and shells[J]. Journal of Applied Mechanics, 1975, 42(4): 911.
|
48 |
LATTANZI A, BARLAT F, PIERRON F, et al. Inverse identification strategies for the characterization of transformation-based anisotropic plasticity models with the non-linear VFM[J]. International Journal of Mechanical Sciences, 2020, 173: 105422.
|
49 |
VAN BLITTERSWYK J, FLETCHER L, PIERRON F. Image-based inertial impact (IBII) tests for measuring the interlaminar shear moduli of composites[J]. Journal of Dynamic Behavior of Materials, 2020, 6(3): 373-398.
|