[1] 王彬文, 陈先民, 苏运来, 等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报, 2021, 42(5):524651. WANG B W, CHEN X M, SU Y L, et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524651(in Chinese). [2] 王业辉. TC4钛合金超声喷丸强化残余应力数值模拟分析[J]. 航空发动机, 2019, 45(3):58-64. WANG Y H. Numerical simulation analysis of residual stress in ultrasonic shot peening of TC4 titanium alloy[J]. Aeroengine, 2019, 45(3):58-64(in Chinese). [3] BARLETTA M. Improvement of the fatigue behavior of stainless steel substrates by low pressure fluidized bed peening (FBP)[J]. Journal of Engineering Materials and Technology, 2011, 133(2):021018. [4] COWLES B A. High cycle fatigue in aircraft gas turbines-an industry perspective[J]. International Journal of Fracture, 1996, 80(2-3):147-163. [5] JAMES M N, NEWBY M, HATTINGGH D G, et al. Shot-peening of steam turbine blades:Residual stresses and their modification by fatigue cycling[J]. Procedia Engineering, 2010, 2(1):441-451. [6] CIAVARELLA M, MACINA G. New results for the fretting-induced stress concentration on Hertzian and flat rounded contacts[J]. International Journal of Mechanical Sciences, 2003, 45(3):449-467. [7] MURUGARATNAM K, UTILI S, PETRINIC N. A combined DEM-FEM numerical method for shot peening parameter optimisation[J]. Advances in Engineering Software, 2015, 79:13-26. [8] NOUGUIER-LEHON C, ZARWEL M, DIVIANI C, et al. Surface impact analysis in shot peening process[J]. Wear, 2013, 302(1-2):1058-1063. [9] ROUSSEAU T, HOC T, GILLES P, et al. Effect of bead quantity in ultrasonic shot peening:Surface analysis and numerical simulations[J]. Journal of Materials Processing Technology, 2015, 225:413-420. [10] BADREDDINE J, ROUHAUD E, MICOULAUT M, et al. Simulation and experimental approach for shot velocity evaluation in ultrasonic shot peening[J]. Mécanique & Industries, 2011, 12(3):223-229. [11] BADREDDINE J, MICOULAUT M, ROUHAUD E, et al. Effect of the confinement on the properties of ultrasonic vibrated granular gases[J]. Granular Matter, 2013, 15(3):367-376. [12] MICOULAUT M, MECHKOV S, RETRAINT D, et al. Granular gases in mechanical engineering:on the origin of heterogeneous ultrasonic shot peening[J]. Granular Matter, 2007, 9(1-2):25-33. [13] TU F B, DELBERGUE D, MIAO H Y, et al. A sequential DEM-FEM coupling method for shot peening simulation[J]. Surface and Coatings Technology, 2017, 319:200-212. [14] THORNTON C. Theoretical background[M]//Granular Dynamics, Contact Mechanics and Particle System Simulations. Cham:Springer International Publishing, 2015:13-25. [15] DAVIES R M. The Determination of static and dynamic yield stresses using a steel ball[J]. Proceedings of the Royal Society of London, 1949, 197(1050):416-432. [16] THORNTON C. Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres[J]. Journal of Applied Mechanics, 1997, 64(2):383-386. [17] BHUVARAGHAN B, SRINIVASAN S M, POTODAR Y, et al. SP modeling by combining DEM and FEM[C]//International Conference on Shot Peening. 2008, 10:131-42. [18] GAO X L, JING X N, SUBHASH G. Two new expanding cavity models for indentation deformations of elastic strain-hardening materials[J]. International Journal of Solids and Structures, 2006, 43(7-8):2193-2208. [19] KIRK D, ABYANEH M Y. Theoretical basis of shot peening coverage control[J]. Shot Peener, 1995, 9(2):28-30. [20] KOUMI K E, NELIAS D, CHAISE T,et al. Modeling of the contact between a rigid indenter and a heterogeneous viscoelastic material[J]. Mechanics of Materials, 2014, 77:28-42. [21] KAWANO S, KAWAGISHI A, SUEZONO N, et al. Development of ultrasonic shot peening technique for reactor components to improve structural integrity against stress corrosion cracking[C]//Proceedings of 17th International Conference on Nuclear Engineering, 2010:543-547. [22] 杨天南, 林爽, 蔡晋. 超声喷丸激励振动幅值对TC4钛合金表面状态影响的仿真研究[J]. 航空精密制造技术, 2020, 56(4):14-18. YANG T N, LIN S, CAI J. Simulation study of effect excited vibration on ultrasonic shot peening surface state of TC4 titanium alloy[J]. Aviation Precision Manufacturing Technology, 2020, 56(4):14-18(in Chinese). |