航空学报 > 2025, Vol. 46 Issue (21): 532276-532276   doi: 10.7527/S1000-6893.2025.32276

中国飞机强度研究所建所 60 周年专刊

热力耦合作用下复合材料-金属连接结构力学性能分析

雷凯(), 吴敬涛, 邓文亮   

  1. 中国飞机强度研究所 强度与结构完整性全国重点实验室,西安 710065
  • 收稿日期:2025-05-20 修回日期:2025-07-21 接受日期:2025-08-13 出版日期:2025-09-19 发布日期:2025-09-05
  • 通讯作者: 雷凯 E-mail:983436817@qq.com
  • 基金资助:
    国家级项目

Analysis of mechanical properties of composite-metal bolted panel under thermo-mechanical coupling condition

Kai LEI(), Jingtao WU, Wenliang DENG   

  1. National Key Laboratory of Strength and Structural Integrity,Aircraft Strength Research Institute of China,Xi’an 710065,China
  • Received:2025-05-20 Revised:2025-07-21 Accepted:2025-08-13 Online:2025-09-19 Published:2025-09-05
  • Contact: Kai LEI E-mail:983436817@qq.com
  • Supported by:
    National Level Project

摘要:

随着复合材料在飞机结构中应用比例的不断提升,将产生大量的复合材料-金属混合连接结构。由于材料热膨胀系数的差异将导致极端温度环境下结构产生显著的热应力。该热应力与外部机械载荷叠加作用,将直接影响飞机结构强度。以金属加筋复合材料多钉壁板结构为研究对象,研究了其在热力耦合作用下的力学性能。试验方面,设计了室温拉伸、纯温度场、热力耦合3类方案,通过分析不同测点应变数据,获取了该壁板结构的热应力分布规律。仿真方面,采用壳-梁组合单元建立了结构有限元模型,获取了不同工况下的热应变及钉载分布情况,和试验结果具有较好的一致性,验证了模型准确性。进一步构建了考虑复合材料与铝合金2种材料损伤的壁板结构渐进损伤分析模型,研究了热应力对结构静强度的影响,结果表明:该壁板失效主要由复合材料蒙皮大面积损伤引发,低温(-55 ℃)引起该壁板的破坏载荷下降6.49%,高温(74 ℃)则提升5.75%。当蒙皮和长桁材料互换后,结构失效由铝合金蒙皮损伤主导,热应力虽会导致塑性变形提前发生,但对结构最终承载能力影响甚微。

关键词: 多钉壁板, 热力耦合, 热膨胀系数, 热应力, 静强度, 渐进损伤分析, 塑性

Abstract:

With the continuous increase in the proportion of composite materials used in aircraft structures, a large number of composite-metal hybrid joint structures will appear. Due to the differences in thermal expansion coefficients of materials, hybrid structures will generate significant thermal stress in extreme temperature environments. This thermal stress, acting in superposition with external mechanical loads, will directly affect the structural strength of the aircraft. This study takes a multi-riveted composite panel with metal stiffeners as the research object and investigates its mechanical behavior under thermo-mechanical coupling. In the experimental aspect, three types of test schemes were designed, including room temperature tensile, pure temperature, and thermo-mechanical coupling. By analyzing strain data from different measurement points, the thermal stress distribution pattern of the panel structure was obtained. In the simulation aspect, the finite model of the structure was established by using the shell-beam combination unit. The thermal strain and bolt load distribution under different test conditions were acquired, showing good consistency with experimental results and thereby validating the model accuracy. Furthermore, a progressive damage analysis model considering damage in both composite materials and aluminum alloy was constructed to investigate the influence of thermal stress on the static strength of the structure. The results indicate that the failure of this panel is primarily triggered by extensive damage in the composite skin; low temperature (-55 ℃) causes a 6.49% reduction in the failure load, while high temperature (74 ℃) leads to a 5.75% increase. When the skin and stringer materials are swapped, structural failure is dominated by damage in the aluminum alloy skin. In this case, although thermal stress causes premature plastic deformation, it has minimal impact on the ultimate load-bearing capacity of the structure.

Key words: multi-bolt wall panel, thermo-mechanical coupling, coefficient of thermal expansion, thermal stress, static strength, progressive damage analysis, plasticity

中图分类号: