1 |
ZHANG D H, CHENG Y Y, JIANG R S, et al. Turbine blade investment casting die technology[M]. Heidelberg: Springer Berlin Heidelberg, 2018.
|
2 |
YU Z Q, LIU J J, LI C, et al. Experimental investigation of film cooling performance on blade endwall with diffusion slot holes and stator-rotor purge flow[C]∥ Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Montreal: ASME, 2020: 1-28.
|
3 |
LI H W, ZHANG D W, HAN F, et al. Experimental investigation on the effect of hole diameter on the leading edge region film cooling of a twist turbine blade under rotation conditions[J]. Applied Thermal Engineering, 2021, 184: 116386.
|
4 |
WANG F Q, PU J, WANG J H, et al. Numerical investigation of effects of blockage, inclination angle, and hole-size on film cooling effectiveness at concave surface[J]. Journal of Turbomachinery, 2021, 143(2): 021007.
|
5 |
ZHU R, ZHANG G H, LI S L, et al. Combined-hole film cooling designs based on the construction of antikidney vortex structure: A review[J]. Journal of Heat Transfer, 2021, 143(3): 030801.
|
6 |
JIANG J S, JIANG L X, CAI Z W, et al. Numerical stress analysis of the TBC-film cooling system under operating conditions considering the effects of thermal gradient and TGO growth[J]. Surface and Coatings Technology, 2019, 357: 433-444.
|
7 |
YUGESWARAN S, AMARNATH P, ANANTHAPA DMANABHAN P V, et al. Thermal conductivity and oxidation behavior of porous Inconel 625 coating interface prepared by dual-injection plasma spraying[J]. Surface and Coatings Technology, 2021, 411: 126990.
|
8 |
CHEN W R, WU X, MARPLE B R, et al. The growth and influence of thermally grown oxide in a thermal barrier coating[J]. Surface and Coatings Technology, 2006, 201(3/4): 1074-1079.
|
9 |
WANG L, LI Z D, DING K Y, et al. Effects of TGO growth on the stress distribution and evolution of three-dimensional cylindrical thermal barrier coatings based on finite element simulations[J]. Ceramics International, 2022, 48(6): 7864-7875.
|
10 |
MARTENA M, BOTTO D, FINO P, et al. Modelling of TBC system failure: Stress distribution as a function of TGO thickness and thermal expansion mismatch[J]. Engineering Failure Analysis, 2006, 13(3): 409-426.
|
11 |
刘亚男, 张立同, 梅辉, 等. 等离子喷涂热障涂层高温风洞热震行为[J]. 稀有金属材料与工程, 2009, 38(1):176-179.
|
|
LIU Y N, ZHANG L T, MEI H, et al. Thermal shock behavior of air plasma sprayed thermal barrier coatings under high temperature wind tunnel[J]. Rare Metal Materials and Engineering, 2009, 38(1): 176-179 (in Chinese).
|
12 |
TORKASHVAND K, POURSAEIDI E, MOHAMMADI M. Effect of TGO thickness on the thermal barrier coatings life under thermal shock and thermal cycle loading[J]. Ceramics International, 2018, 44(8): 9283-9293.
|
13 |
KARLSSON A M, EVANS A G. A numerical model for the cyclic instability of thermally grown oxides in thermal barrier systems[J]. Acta Materialia, 2001, 49(10): 1793-1804.
|
14 |
CHICOT D, DÉMARÉCAUX P, LESAGE J. Apparent interface toughness of substrate and coating couples from indentation tests[J]. Thin Solid Films, 1996, 283(1/2): 151-157.
|
15 |
BENJEDDOU A, ANDRIANARISON O. A heat mixed variational theorem for thermoelastic multilayered composites[J]. Computers and Structures, 2006, 84(19-20): 1247-1255.
|
16 |
李顶河, 麻硕. 含损伤热障涂层结构热力耦合问题的扩展逐层/实体元方法研究[J]. 航空科学技术, 2021, 32(9): 12-24.
|
|
LI D H, MA S. Study on thermomechanical extended-layewise/solid-elements method for thermomechanical problems of thermal barrier coatings structure with damage[J]. Aeronautical Science and Technology, 2021, 32(9): 12-24 (in Chinese).
|
17 |
LI D H, FISH J. Thermomechanical Extended Layerwise Method for laminated composite plates with multiple delaminations and transverse cracks[J]. Composite Structures, 2018, 185: 665-683.
|
18 |
LI D H, ZHANG F. Full extended layerwise method for the simulation of laminated composite plates and shells[J]. Computers and Structures, 2017, 187: 101-113.
|
19 |
LI D H, ZHANG X, SZE K Y, et al. Extended layerwise method for laminated composite plates with multiple delaminations and transverse cracks[J].Computational Mechanics, 2016, 58(4): 657-679.
|
20 |
LI D H, ZHANG F, XU J X. Incompatible extended layerwise method for laminated composite shells[J]. International Journal of Mechanical Sciences, 2016, 119: 243-252.
|
21 |
LI D H. Delamination and transverse crack growth prediction for laminated composite plates and shells[J]. Computers and Structures, 2016, 177: 39-55.
|
22 |
LI D H, LIU Y, ZHANG X. An extended Layerwise method for composite laminated beams with multiple delaminations and matrix cracks[J]. International Journal for Numerical Methods in Engineering, 2015, 101(6): 407-434.
|
23 |
LEVIT M, GRIMBERG I, WEISS B Z. Residual stresses in ceramic plasma-sprayed thermal barrier coatings: Measurement and calculation[J]. Materials Science and Engineering: A, 1996, 206(1): 30-38.
|
24 |
SCARDI P, LEONI M, BERTAMINI L. Residual stresses in plasma sprayed partially stabilised zirconia TBCs: Influence of the deposition temperature[J]. Thin Solid Films, 1996, 278(1-2): 96-103.
|
25 |
CHEN W L, LIU M, ZHANG J F, et al. High-temperature oxidation behavior and analysis of impedance spectroscopy of 7YSZ thermal barrier coating prepared by plasma spray-physical vapor deposition[J]. Chinese Journal of Aeronautics, 2018, 31(8): 1764-1773.
|
26 |
AHMADIAN S, JORDAN E H. Explanation of the effect of rapid cycling on oxidation, rumpling, microcracking and lifetime of air plasma sprayed thermal barrier coatings[J]. Surface and Coatings Technology, 2014, 244: 109-116.
|
27 |
李定骏, 杨镠育, 孙帆, 等. 面向航空发动机与燃气轮机先进热障涂层制备: 预热温度对热障涂层表面裂纹形成的影响[J]. 航空学报, 2022, 43(6): 516184.
|
|
LI D J, YANG L Y, SUN F, et al. Effect of preheating temperature on formation of surface cracks in thermal barrier coating system[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 516184 (in Chinese).
|
28 |
BÄKER M, RÖSLER J, HEINZE G. A parametric study of the stress state of thermal barrier coatings Part II: Cooling stresses[J]. Acta Materialia, 2005, 53(2): 469-476.
|
29 |
LIU Y K, COPIN E, DULUARD S, et al. Apparent interfacial toughness of undoped and photoluminescent Eu3+-doped yttria-stabilized zirconia thermal barrier coatings[J]. Journal of Thermal Spray Technology, 2020, 29(3): 433-443.
|
30 |
LIU Y Z, ZHENG S J, ZHU Y L, et al. Microstructural evolution at interfaces of thermal barrier coatings during isothermal oxidation[J]. Journal of the European Ceramic Society, 2016, 36(7): 1765-1774.
|
31 |
LIU X J, WANG T, LI C C, et al. Microstructural evolution and growth kinetics of thermally grown oxides in plasma sprayed thermal barrier coatings[J]. Progress in Natural Science: Materials International, 2016, 26(1): 103-111.
|
32 |
LI G R, YANG G J, LI C X, et al. Sintering characteristics of plasma-sprayed TBCs: Experimental analysis and an overall modelling[J]. Ceramics International, 2018, 44(3): 2982-2990.
|
33 |
刘延宽, 许婧, 李尧, 等. Eu3+掺杂对YSZ热障涂层隔热性能与涂层界面断裂韧性的影响研究[J]. 稀有金属材料与工程, 2021, 50(5): 1699-1705.
|
|
LIU Y K, XU J, LI Y. Effect of Eu3+ doping on thermal insulation property and interfacial fracture toughness of YSZ thermal barrier coatings[J]. Rare Metal Materials And Engineering, 2021, 50(5): 1699-1705 (in Chinese).
|
34 |
WANG K, PENG H, GUO H B, et al. Effect of sintering on thermal conductivity and thermal barrier effects of thermal barrier coatings[J]. Chinese Journal of Aeronautics, 2012, 25(5): 811-816.
|
35 |
LIU Y K, LIU Y H, LOURS P, et al. Influence of isothermal aging conditions on APS TBC’s interfacial fracture toughness[J]. Surface and Coatings Technology, 2017, 313: 417-424.
|
36 |
SHEN W, WANG F C, FAN Q B, et al. Lifetime prediction of plasma-sprayed thermal barrier coating systems[J]. Surface and Coatings Technology, 2013, 217: 39-45.
|
37 |
郑允宅, 朱建峰, 曹萍丽, 等. 等离子喷涂热障涂层中应力分布的有限元模拟[J]. 机械工程材料, 2015, 39(9):84-88.
|
|
ZHENG Y Z, ZHU J F, CAO P L, et al. Finite element simulation of stress distribution in plasma sprayed thermal barrier coating[J]. Materials for Mechanical Engineering, 2015, 39(9):84-88 (in Chinese).
|
38 |
YU Q M, CEN L. Residual stress distribution along interfaces in thermal barrier coating system under thermal cycles[J]. Ceramics International, 2017, 43(3): 3089-3100.
|