1 |
AKCA E, GÜRSEL A. A review on superalloys and IN718 nickel-based INCONEL superalloy[J]. Periodicals of Engineering and Natural Sciences (PEN), 2015, 3(1): 47.
|
2 |
TOKAJI K, TAKAFUJI S, OHYA K, et al. Fatigue behaviour of beta Ti-22V-4Al alloy subjected to surface-microstructural modification[J]. Journal of Materials Science, 2003, 38(6): 1153-1159.
|
3 |
轩福贞, 朱明亮, 王国彪. 结构疲劳百年研究的回顾与展望[J]. 机械工程学报, 2021, 57(6): 26-51.
|
|
XUAN F Z, ZHU M L, WANG G B. Retrospect and prospect on century-long research of structural fatigue[J]. Journal of Mechanical Engineering, 2021, 57(6): 26-51 (in Chinese).
|
4 |
王润梓, 廖鼎, 张显程, 等. 高温结构蠕变疲劳寿命设计方法: 从材料到结构[J]. 机械工程学报, 2021, 57(16): 66-86, 105.
|
|
WANG R Z, LIAO D, ZHANG X C, et al. Creep-fatigue life design methods in high-temperature structures: From materials to components[J]. Journal of Mechanical Engineering, 2021, 57(16): 66-86, 105 (in Chinese).
|
5 |
SUN L, BAO X G, GUO S J, et al. The creep-fatigue behavior of a nickel-based superalloy: Experiments study and cyclic plastic analysis[J]. International Journal of Fatigue, 2021, 147: 106187.
|
6 |
BASQUIN O H. The exponential law of endurance tests[J]. Proceeding of the American Society for Testing and Materials, 1910, 10: 625-630.
|
7 |
MORROW J. Cyclic plastic strain energy and fatigue of metals[C]∥ ASTM STP. West Conshohocken: ASTM, 1965: 45-87.
|
8 |
GOODMAN J. Mechanics applied to engineering[M]. London: Longmans, Green and Co., 1930.
|
9 |
MANSON S. Behavior of materials under conditions of thermal stress: NACA TN 2933[R]. Washington, D.C.: NACA, 1953.
|
10 |
COFFIN L. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Transactions of the ASME, 1954, 76: 931-940.
|
11 |
YANG S, YANG L, WANG Y R. Determining the fatigue parameters in total strain life equation of a material based on monotonic tensile mechanical properties[J]. Engineering Fracture Mechanics, 2020, 226: 106866.
|
12 |
MANONUKUL A, DUNNE F P E. High- and low-cycle fatigue crack initiation using polycrystal plasticity[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2004, 460(2047): 1881-1903.
|
13 |
YUAN G J, ZHANG X C, CHEN B, et al. Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach[J]. Journal of Materials Science & Technology, 2020, 38: 28-38.
|
14 |
CRUZADO A, LUCARINI S, LLORCA J, et al. Microstructure-based fatigue life model of metallic alloys with bilinear Coffin-Manson behavior[J]. International Journal of Fatigue, 2018, 107: 40-48.
|
15 |
KORSUNSKY A M, DINI D, DUNNE F P E, et al. Comparative assessment of dissipated energy and other fatigue criteria[J]. International Journal of Fatigue, 2007, 29(9-11): 1990-1995.
|
16 |
ZHANG K S, JU J W, LI Z H, et al. Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity[J]. Mechanics of Materials, 2015, 85: 16-37.
|
17 |
SANGID M D, MAIER H J, SEHITOGLU H. A physically based fatigue model for prediction of crack initiation from persistent slip bands in polycrystals[J]. Acta Materialia, 2011, 59(1): 328-341.
|
18 |
SWEENEY C A, O’BRIEN B, DUNNE F P E, et al. Strain-gradient modelling of grain size effects on fatigue of CoCr alloy[J]. Acta Materialia, 2014, 78: 341-353.
|
19 |
YUAN G J, WANG R Z, GONG C Y, et al. Investigations of micro-Notch effect on small fatigue crack initiation behaviour in nickel-based alloy GH4169: Experiments and simulations[J]. International Journal of Fatigue, 2020, 136: 105578.
|
20 |
YUAN G J, WANG R Z, ZHU W B, et al. Experimental and simulated investigations of low cycle fatigue behavior in a nickel-based superalloy with different volume fractions of δ phase[J]. International Journal of Fatigue, 2021, 153: 106411.
|
21 |
JIANG Y Y, OTT W, BAUM C, et al. Fatigue life predictions by integrating EVICD fatigue damage model and an advanced cyclic plasticity theory[J]. International Journal of Plasticity, 2009, 25(5): 780-801.
|
22 |
ZHANG X C, LI H C, ZENG X, et al. Fatigue behavior and bilinear Coffin-Manson plots of Ni-based GH4169 alloy with different volume fractions of δ phase[J]. Materials Science and Engineering: A, 2017, 682: 12-22.
|
23 |
PRAVEEN K, SASTRY G S, SINGH V. Room temperature LCF behaviour of superalloy IN 718[J]. Transactions of the Indian Institute of Metals, 2004, 57(6): 623-630.
|
24 |
LIU L L, HU D Y, LI D, et al. Effect of grain size on low cycle fatigue life in compressor disc superalloy GH4169 at 600 ℃[J]. Procedia Structural Integrity, 2017, 7: 174-181.
|
25 |
KUMAR S, CHATTOPADHYAY K, SINGH V, et al. Low cycle fatigue life of the alloy IN718 enhanced through surface nanostructuring[J]. Materials Characterization, 2020, 159: 110066.
|
26 |
PRAVEEN K V U, SINGH V. Effect of cold rolling on the Coffin-Manson relationship in low-cycle fatigue of superalloy IN718[J]. Metallurgical and Materials Transactions A, 2008, 39(1): 79-86.
|
27 |
SINGH V. Effects of prior cold working on low cycle fatigue behavior of stainless steels, titanium alloy timetal 834 and superalloy IN 718: A review[J]. Transactions of the Indian Institute of Metals, 2010, 63(2): 167-172.
|
28 |
PRAVEEN K V U, SINGH V. Effect of heat treatment on Coffin-Manson relationship in LCF of superalloy IN718[J]. Materials Science and Engineering: A, 2008, 485(1-2): 352-358.
|
29 |
ETRIS S F, FIORINI Y R, LIEB K C, et al. Strain fatigue and tensile behavior of Inconel® 718 from room temperature to 650℃[J]. Journal of Testing and Evaluation, 1974, 2(4): 249.
|
30 |
潘磊. 考虑车削表面状态的GH4169镍基高温合金疲劳寿命模型研究[D]. 南京: 南京航空航天大学, 2020.
|
|
PAN L. Research on fatigue life model of GH4169 nickel-based superalloy considering turning surface integrity[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese).
|
31 |
燕怒, 韩晓琪, 余泳华, 等. GH4169镍基高温合金的超高周疲劳性能[J]. 机械工程材料, 2016, 40(4): 9-12.
|
|
YAN N, HAN X Q, YU Y H, et al. Very high cycle fatigue properties of GH4169 Ni-based superalloy[J]. Materials for Mechanical Engineering, 2016, 40(4): 9-12 (in Chinese).
|
32 |
ZHAO X, ZHAO J J, LIU Y J. Fatigue behavior of GH4169 alloy up to very high cycles[J]. Advanced Materials Research, 2012, 535-537: 928-931.
|
33 |
陈永红. Inconel718镍基高温合金的低温高周疲劳性能[J]. 上海钢研, 2005(2): 44-47.
|
|
CHEN Y H. Low temperature and high cycle fatigue properties of Inconel718 nickel-base superalloy[J]. Shonghai Steel & Iron Research, 2005(2): 44-47 (in Chinese).
|
34 |
MA X F, DUAN Z, SHI H J, et al. Fatigue and fracture behavior of nickel-based superalloy Inconel 718 up to the very high cycle regime[J]. Journal of Zhejiang University-Science A, 2010, 11(10): 727-737.
|
35 |
ZHANG T L, YUAN H, YANG S. Microstructural characterization and fatigue performance of the recast material induced by laser manufacturing of a nickel-based superalloy[J]. Journal of Materials Processing Technology, 2021, 293: 117087.
|
36 |
ZHONG L Q, HU H, LIANG Y L, et al. High cycle fatigue performance of inconel 718 alloys with different strengths at room temperature[J]. Metals, 2018, 9(1): 13.
|
37 |
NAGATA N, SATO S, KATADA Y. Low cycle fatigue behavior of pressure vessel steels in high temperature pressurized water[J]. ISIJ International, 1991, 31(1): 106-114.
|
38 |
HILL R, RICE J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain[J]. Journal of the Mechanics and Physics of Solids, 1972, 20(6): 401-413.
|
39 |
ASARO R J, RICE J R. Strain localization in ductile single crystals[J]. Journal of the Mechanics and Physics of Solids, 1977, 25(5): 309-338.
|
40 |
PEIRCE D, ASARO R J, NEEDLEMAN A. Material rate dependence and localized deformation in crystalline solids[J]. Acta Metallurgica, 1983, 31(12): 1951-1976.
|
41 |
BUSSO E. Cyclic deformation of monocrystalline nickel aluminide and high temperature coatings[D]. Cambridge: Massachusetts Institute of Technology, 1990.
|
42 |
LI D F, GOLDEN B J, O’DOWD N P. Multiscale modelling of mechanical response in a martensitic steel: A micromechanical and length-scale-dependent framework for precipitate hardening[J]. Acta Materialia, 2014, 80: 445-456.
|
43 |
FREDERICK C O, ARMSTRONG P J. A mathematical representation of the multiaxial Bauschinger effect[J]. Materials at High Temperatures, 2007, 24(1): 1-26.
|
44 |
SKELTON R P, VILHELMSEN T, WEBSTER G A. Energy criteria and cumulative damage during fatigue crack growth[J]. International Journal of Fatigue, 1998, 20(9): 641-649.
|
45 |
SWEENEY C A, O’BRIEN B, DUNNE F P E, et al. Micro-scale testing and micromechanical modelling for high cycle fatigue of CoCr stent material[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 46: 244-260.
|
46 |
SUN X, CHOI K S, LIU W N, et al. Predicting failure modes and ductility of dual phase steels using plastic strain localization[J]. International Journal of Plasticity, 2009, 25(10): 1888-1909.
|
47 |
SAUZAY M. Cubic elasticity and stress distribution at the free surface of polycrystals[J]. Acta Materialia, 2007, 55(4): 1193-1202.
|
48 |
LU Y S, ZHU Z W, LI D Y, et al. Constitutive model of 42CrMo steel under a wide range of strain rates based on crystal plasticity theory[J]. Materials Science and Engineering: A, 2017, 679: 215-222.
|
49 |
LIN B, ZHAO L G, TONG J, et al. Crystal plasticity modeling of cyclic deformation for a polycrystalline nickel-based superalloy at high temperature[J]. Materials Science and Engineering: A, 2010, 527(15): 3581-3587.
|
50 |
BUSSO E P, MEISSONNIER F T, O’DOWD N P. Gradient-dependent deformation of two-phase single crystals[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(11): 2333-2361.
|
51 |
YUAN G J, CHEN H, LI D F, et al. The effect of δ phase on the microplasticity evolution of a heat-treated nickel base superalloy[J]. Mechanics of Materials, 2020, 148: 103520.
|