| [1] |
KUMAR C H, SWAMY R P. Fatigue life prediction of glass fiber reinforced epoxy composites using artificial neural networks[J]. Composites Communications, 2021, 26: 100812.
|
| [2] |
马辉东, 连喆, 杨鑫源, 等. 变频加载纤维增强复合材料剩余强度预测[J]. 航空学报, 2025, 46(8): 231068.
|
|
MA H D, LIAN Z, YANG X Y, et al. Residual strength prediction for fiber-reinforced composites under variable frequency loading[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 231068 (in Chinese).
|
| [3] |
DEGRIECK AND J, VAN PAEPEGEM W. Fatigue damage modeling of fibre-reinforced composite materials: Review[J]. Applied Mechanics Reviews, 2001, 54(4): 279-300.
|
| [4] |
HWANG W, HAN K S. Fatigue of composites: Fatigue modulus concept and life prediction[J]. Journal of Composite Materials, 1986, 20(2): 154-165.
|
| [5] |
YANG J N, LEE L J, SHEU D Y. Modulus reduction and fatigue damage of matrix dominated composite laminates[J]. Composite Structures, 1992, 21(2): 91-100.
|
| [6] |
WU F Q, YAO W X. A fatigue damage model of composite materials[J]. International Journal of Fatigue, 2010, 32(1): 134-138.
|
| [7] |
SUZUKI T, MAHFUZ H, TAKANASHI M. A new stiffness degradation model for fatigue life prediction of GFRPs under random loading[J]. International Journal of Fatigue, 2019, 119: 220-228.
|
| [8] |
闫海, 邓忠民. 基于深度学习的短纤维增强聚氨酯复合材料性能预测[J]. 复合材料学报, 2019, 36(6): 1413-1420.
|
|
YAN H, DENG Z M. Prediction of properties of short fiber reinforced urethane polymer composites based on deep learning[J]. Acta Materiae Compositae Sinica, 2019, 36(6): 1413-1420 (in Chinese).
|
| [9] |
DING X X, HOU X N, XIA M, et al. Predictions of macroscopic mechanical properties and microscopic cracks of unidirectional fibre-reinforced polymer composites using deep neural network (DNN)[J]. Composite Structures, 2022, 302: 116248.
|
| [10] |
SHIROLKAR N, PATWARDHAN P, RAHMAN A, et al. Investigating the efficacy of machine learning tools in modeling the continuous stabilization and carbonization process and predicting carbon fiber properties[J]. Carbon, 2021, 174: 605-616.
|
| [11] |
MENTGES N, DASHTBOZORG B, MIRKHALAF S M. A micromechanics-based artificial neural networks model for elastic properties of short fiber composites[J]. Composites Part B: Engineering, 2021, 213: 108736.
|
| [12] |
ZHOU J, WU Z, LIU Z L, et al. A novel normalized fatigue progressive damage model for complete stress levels based on artificial neural network[J]. International Journal of Fatigue, 2024, 187: 108447.
|
| [13] |
ZHENG T, GUO L C, WANG Z X, et al. A reliable progressive fatigue damage model for life prediction of composite laminates incorporating an adaptive cyclic jump algorithm[J]. Composites Science and Technology, 2022, 227: 109587.
|
| [14] |
ASTM. Standard test method for tensile properties of polymer matrix composite materials: [S]. West Conshohocken: ASTM, 2014.
|
| [15] |
ASTM. Standard test method for determining the compressive properties of polymer matrix composite laminates using a Combined Loading Compression (CLC) test fixture: [S]. West Conshohocken: ASTM, 2009.
|
| [16] |
ASTM. Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of a ±45° laminate: [S]. West Conshohocken: ASTM, 2013.
|
| [17] |
ASTM. Standard test method for tension-tension fatigue of polymer matrix composite materials: [S]. West Conshohocken: ASTM, 2019.
|
| [18] |
LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[C]∥Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 4768-4777.
|
| [19] |
BI Y, XIANG D X, GE Z Y, et al. An interpretable prediction model for identifying N7-methylguanosine sites based on XGBoost and SHAP[J]. Molecular Therapy Nucleic Acids, 2020, 22: 362-372.
|
| [20] |
YANG C, CHEN M Y, YUAN Q. The application of XGBoost and SHAP to examining the factors in freight truck-related crashes: An exploratory analysis[J]. Accident Analysis & Prevention, 2021, 158: 106153.
|
| [21] |
UDRESCU S M, TEGMARK M. AI Feynman: A physics-inspired method for symbolic regression[J]. Science Advances, 2020, 6(16): eaay2631.
|
| [22] |
马菲, 张琼, 赖培军, 等. 基于BP神经网络的试飞训练安全性量化模型[J]. 航空学报, 2024, 45(5): 529957.
|
|
MA F, ZHANG Q, LAI P J, et al. BP neural network-based quantitative classification model for safety in experimental flight training[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529957 (in Chinese).
|
| [23] |
梁益铭, 李广宁, 徐敏. 基于机器学习的智能控制数值虚拟飞行方法[J]. 航空学报, 2023, 44(17): 128098.
|
|
LIANG Y M, LI G N, XU M. Method for numerical virtual flight with intelligent control based on machine learning[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 128098 (in Chinese).
|
| [24] |
HAN H Y, LI W D, ANTONOV S, et al. Mapping the creep life of nickel-based SX superalloys in a large compositional space by a two-model linkage machine learning method[J]. Computational Materials Science, 2022, 205: 111229.
|
| [25] |
ZHANG Y D, ZHENG T, LIU G, et al. Predicting the fatigue life of T800 carbon fiber composite structural component based on fatigue experiments of unidirectional laminates[J]. International Journal of Fatigue, 2025, 190: 108622.
|