首页 >

热弹性多构型梯度点阵结构拓扑优化设计

王琪1,武龙1,刘振2,刘建霞3,夏凉2   

  1. 1. 中国空气动力研究与发展中心
    2. 华中科技大学
    3. 中国空气动力研究与发展中心空天技术研究所
  • 收稿日期:2024-03-11 修回日期:2024-06-15 出版日期:2024-06-17 发布日期:2024-06-17
  • 通讯作者: 夏凉
  • 基金资助:
    国家自然科学基金;国家自然科学基金

Topology optimization design of thermoelastic multi-configuration gradi-ent lattice structures

  • Received:2024-03-11 Revised:2024-06-15 Online:2024-06-17 Published:2024-06-17
  • Contact: Liang XIA

摘要: 本文提出了一种用于热弹性多构型梯度点阵结构设计的拓扑优化方法。具体地,假设结构由各种空间变化的点阵子结构组成。每个点阵子结构考虑两个设计变量,一个准离散变量决定其空间拓扑布局,另一个连续密度变量决定其材料用量。对于预定义几何拓扑的点阵子结构,通过改变其特征尺寸,获取一系列定构型、变密度的点阵子结构样本,并进行静态凝聚以降低自由度数目,依此建立相应的数据驱动插值模型,显式地关联点阵密度变量与其热弹性等效本构行为。进一步地,为实现多构型点阵的混杂布局设计,构建了准离散点阵选型变量的多材料插值模型。数值算例结果表明,设计方法能够利用梯度点阵材料平衡温度载荷作用下引起的机械变形,进而有效地提升结构的热-机械耦合承载能力。此外,由于基于子结构法进行梯度点阵结构建模,整体结构与点阵子结构的几何构型和热弹性性能均是耦合的;相较于基于均匀化理论的设计方法,本文设计方案无需额外的几何后处理,可有效避免设计与制造的性能偏差。

关键词: 拓扑优化, 多材料, 梯度点阵, 热力耦合, 数据驱动

Abstract: This paper presents a topology optimization method for the design of thermoelastic multi-configuration gradient lattice structures. Specifically, the structure is assumed to consist of several spatially varying lattice substructures. Two design variables are considered for each substructure, a quasi-discrete variable that determines its spatial topological layout and a continuous density variable that determines its material usage. For lattice substructures with predefined geomet-ric topology, a series of samples of lattice substructures with fixed configuration and variable density are obtained by varying their feature sizes, and static condensation is performed to reduce the number of degrees of freedom, building the corresponding data-driven interpolation model to explicitly correlate the density variable with its thermoelastic equivalent behavior. Furthermore, a multi-material interpolation model for quasi-discrete lattice selection variables is constructed to realize the hybrid layout design of multi-configuration lattice substructures. The numerical example re-sults show that the design method is able to utilize the gradient lattice structures to balance the mechanical defor-mation caused by temperature loading, which in turn effectively enhances the thermal-mechanical coupled load carry-ing capacity of the structure. Moreover, since the gradient lattice structure is modeled based on the substructure meth-od, the geometrical configuration and thermoelastic properties of the whole structure and the lattice structures are cou-pled; compared with the design method based on the homogenization theory, the design scheme in this paper does not require additional geometrical post-processing, and the performance deviation between design and fabrication can be effectively avoided.

Key words: topology optimization, multi-material, gradient lattice, thermo-mechanical coupling, data-driven

中图分类号: