[1] LI H, FU M W. Deformation inhomogeneity[M]//Deformation-based processing of materials. Amsterdam:Elsevier, 2019:29-83. [2] YANG H, LI H, ZHANG Z Y, et al. Advances and trends on tube bending forming technologies[J]. Chinese Journal of Aeronautics, 2012, 25(1):1-12. [3] MORI K. Joining processes by plastic deformation[J]. Advanced Materials Research, 2014, 966-967:29-47. [4] MORI K I, BAY N, FRATINI L, et al. Joining by plastic deformation[J]. CIRP Annals, 2013, 62(2):673-694. [5] ALVES L M, SILVA C M A, MARTINS P A F. End-to-end joining of tubes by plastic instability[J]. Journal of Materials Processing Technology, 2014, 214(9):1954-1961. [6] YANG J C, LI H, HUANG D, et al. Deformation-based joining for high-strength Ti-3Al-2.5V tubular fittings based on internal roller swaging[J]. International Journal of Mechanical Sciences, 2020, 171:105367. [7] MARRÉ M, BROSIUS A, TEKKAYA A E. Joining by compression and expansion of (none-) reinforced profiles[J]. Advanced Materials Research, 2008, 43:57-68. [8] PSYK V, RISCH D, KINSEY B L, et al. Electromagnetic forming-A review[J]. Journal of Materials Processing Technology, 2011, 211(5):787-829. [9] GOLOVASHCHENKO S. Methodology of design of pulsed electromagnetic joining of tubes[C]//Second Global Symposium on Innovations in Materials Processing and Manufacturing:Sheet Materials, 2001:283-299. [10] PARK Y B, KIM H Y, OH S I. Design of axial/torque joint made by electromagnetic forming[J]. Thin-Walled Structures, 2005, 43(5):826-844. [11] WEDDELING C, WOODWARD S T, MARRÉ M, et al. Influence of groove characteristics on strength of form-fit joints[J]. Journal of Materials Processing Technology, 2011, 211(5):925-935. [12] HAMMERS T, MARRÉ M, RAUTENBERG J, et al. Influence of mandrel's surface and material on the mechanical properties of joints produced by electromagnetic compression[J]. Steel Research International, 2009, 80(5):366-375. [13] YOKELL S. A working guide to shell-and-tube heat exchangers[M]. New York:McGraw-Hill, 1990 [14] HOMBERG W, MARRÉ M, BEERWALD C, et al. Joining by forming of lightweight frame structures[J]. Advanced Materials Research, 2006, 10:89-100. [15] GIES S, WEDDELING C, MARRÉ M, et al. Analytic prediction of the process parameters for form-fit joining by Die-less hydroforming[J]. Key Engineering Materials, 2012, 504-506:393-398. [16] WEBER F, MVLLER M, HAUPT P, et al. Analytical process design for interference-fit joining of rectangular profiles[J]. Journal of Materials Processing Technology, 2020, 276:116391. [17] GIES S, WEDDELING C, KWIATKOWSKI L, et al. Groove filling characteristics and strength of form-fit joints produced by Die-less hydroforming[J]. Key Engineering Materials, 2013, 554-557:671-680. [18] WEBER F, HAHN M, TEKKAYA A E. Joining by Die-less hydroforming with outer pressurization[J]. Journal of Advanced Joining Processes, 2020, 1:100014. [19] 欧阳小平, 方旭, 朱莹, 等. 航空液压管接头综述[J]. 中国机械工程, 2015, 26(16):2262-2271. OUYANG X P, FANG X, ZHU Y, et al. Overview of aviation hydraulic fittings[J]. China Mechanical Engineering, 2015, 26(16):2262-2271(in Chinese). [20] 王巧玲, 詹梅, 李宏伟, 等. 大直径薄壁管双扩口成形机理与工艺研究[J]. 塑性工程学报, 2019, 26(3):104-112. WANG Q L, ZHAN M, LI H W, et al. Research on forming mechanism and process of double flaring tubes with large diameter and thin wall[J]. Journal of Plasticity Engineering, 2019, 26(3):104-112(in Chinese). [21] SAE INTERNATIONAL. Tubing end double flare, standard dimensions for:AS33583[S]. New York:SAE Committee, 1997:1-3. [22] LU Y H. Study of tube flaring ratio and strain rate in the tube flaring process[J]. Finite Elements in Analysis and Design, 2004, 40(3):305-318. [23] 席鹏翀. 7A04铝合金轮毂挤压成形工艺与实验研究[D]. 太原:中北大学, 2008:51-52. XI P C. Study on extrusion forming technology and experiment of 7A04 aluminum alloy wheel hub[D]. Taiyuan:North University of China, 2008:51-52(in Chinese). [24] AL-HASSANI S T S, JOHNSON W, LOWE W T. Characteristics of inversion tubes under axial loading[J]. Journal of Mechanical Engineering Science, 1972, 14(6):370-381. [25] MANABE K, NISHIMURA H. Forming loads in tube-flaring with conical punch-Study on nosing and flaring of tubes V[J]. Journal of the Japan Society for Technology of Plasticity, 1983, 24(264):47-51. [26] MANABE K, NISHIMURA H. Stress and strain distributions in tube-flaring with conical punch-Study on nosing and faring of tubes VI[J]. Journal of the Japan Society for Technology of Plasticity, 1983, 24(266):276-282. [27] YANG J L, LUO M, HUA Y L, et al. Energy absorption of expansion tubes using a conical-cylindrical die:experiments and numerical simulation[J]. International Journal of Mechanical Sciences, 2010, 52(5):716-725. [28] SUN Z C, YANG H. Failure mechanism and forming limit of tube axial compressive process[J]. Transactions of Nonferrous Metals Society of China, 2006, 16:s785-s790. [29] 杜红伟, 李克彬, 应富强. 薄壁管管端成形的有限元分析[J]. 塑性工程学报, 2010, 17(4):66-70. DU H W, LI K B, YING F Q. Finite element analysis on end forming of thin-walled tubes[J]. Journal of Plasticity Engineering, 2010, 17(4):66-70(in Chinese). [30] 王同海, 赵国群, 贾玉玺. 管材冲压扩口变形区的应力应变分析[J]. 山东工业大学学报, 1999, 29(3):258-262. WANG T H, ZHAO G Q, JIA Y X. Analysis of stress and strain in swelling deformation area at the end of tubes[J]. Journal of Shandong University of Technology, 1999, 29(3):258-262(in Chinese). [31] ALVES M L, ALMEIDA B P P, ROSA P A R, et al. End forming of thin-walled tubes[J]. Journal of Materials Processing Technology, 2006, 177(1-3):183-187. [32] MIRZAI M A, MANABE K I, MABUCHI T. Deformation characteristics of microtubes in flaring test[J]. Journal of Materials Processing Technology, 2008, 201(1-3):214-219. [33] YANG J C, LI H, HUANG D, et al. Forming of thin-walled AA6061-T4 tubular joint by elastomeric bulging:experiment and computation[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(1-2):25-38. [34] 李光俊, 詹梅. LF2M-JG6×1挤压式无扩口导管端头成形工艺[J]. 塑性工程学报, 2008, 15(2):54-56. LI G J, ZHAN M. The end forming technology of LF2M-JG6×1 non-extend tube[J]. Journal of Plasticity Engineering, 2008, 15(2):54-56(in Chinese). [35] YANG J C, LI H, BIAN T J, et al. Relationship among joined tubular material properties, joining behavior and performance by elastomeric swaging[J]. Thin-Walled Structures, 2021, 162:107561. [36] SHIRGAOKAR M, NGAILE G, ALTAN T, et al. Hydraulic crimping:Application to the assembly of tubular components[J]. Journal of Materials Processing Technology, 2004, 146(1):44-51. [37] HENRIKSEN J, NORDHAGEN H O, HOANG H N, et al. Numerical and experimental verification of new method for connecting pipe to flange by cold forming[J]. Journal of Materials Processing Technology, 2015, 220:215-223. [38] 张荣霞, 吴为, 曾元松. TA18钛合金导管的内径滚压连接工艺[J]. 锻压技术, 2017, 42(5):43-47. ZHANG R X, WU W, ZENG Y S. Internal rolling connecting on guide tubes for titanium alloy TA18[J]. Forging & Stamping Technology, 2017, 42(5):43-47(in Chinese). [39] MARRÉ M, BROSIUS A, TEKKAYA A E. New aspects of joining by compression and expansion of tubular workpieces[J]. International Journal of Material Forming, 2008, 1(1):1295-1298. [40] PRZYBYLSKI W, WOJCIECHOWSKI J, KLAUS A, et al. Manufacturing of resistant joints by rolling for light tubular structures[J]. The International Journal of Advanced Manufacturing Technology, 2008, 35(9-10):924-934. [41] EATON Aerospace Group. Rynglok tube fitting system[EB/OL]. (2019-08)[2021-06-01]. https://www.eaton.com/Eaton/ProductsServices/Aerospace/HosesCouplingsDuctingandSeals/Rynglok/index.htm. [42] ZHANG Q, ZHANG Y S, CAO M, et al. Joining process for copper and aluminum tubes by rotary swaging method[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(1-4):163-173. [43] ZHANG Q, JIN K Q, MU D. Tube/tube joining technology by using rotary swaging forming method[J]. Journal of Materials Processing Technology, 2014, 214(10):2085-2094. [44] HARTL D J, LAGOUDAS D C. Aerospace applications of shape memory alloys[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2007, 221(4):535-552. [45] AREOFIT. Shape memory alloy fluid fitting system[EB/OL]. (2009-11-12)[2021-06-01]. https://www.aerofit.com. [46] 王磊, 闫德胜, 姜志民, 等. Ni-Ti-Nb宽滞后形状记忆合金管接头研究和进展[J]. 材料工程, 2004, 32(7):60-63. WANG L, YAN D S, JIANG Z M, et al. Research and development of Ni-Ti-Nb shape memory alloy pipe-joint with wide hysteresis[J]. Journal of Materials Engineering, 2004, 32(7):60-63(in Chinese). [47] PATTABI M, MURARI M S. Effect of cold rolling on phase transformation temperatures of NiTi shape memory alloy[J]. Journal of Materials Engineering and Performance, 2015, 24(2):556-564. [48] YIN X Q, MI X J, LI Y F, et al. Microstructure and properties of deformation processed polycrystalline Ni47Ti44Nb9 shape memory alloy[J]. Journal of Materials Engineering and Performance, 2012, 21(12):2684-2690. [49] LEE W J, WEBER B, LEINENBACH C. Recovery stress formation in a restrained Fe-Mn-Si-based shape memory alloy used for prestressing or mechanical joining[J]. Construction and Building Materials, 2015, 95:600-610. [50] TABESH M, BOYD J, ATLI K C, et al. Design, fabrication, and testing of a multiple-actuation shape memory alloy pipe coupler[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(6):1165-1182. [51] PIOTROWSKI B, BEN ZINEB T, PATOOR E, et al. A finite element-based numerical tool for Ni47Ti44Nb9 SMA structures design:application to tightening rings[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(2):141-153. [52] 刘欣. NiTiFe形状记忆合金管接头连接成形过程建模仿真研究[D]. 西安:西北工业大学, 2019:65-66. LIU X. Numerical simulation study on joining process of NiTiFe shape memory alloy tube joint[D]. Xi'an:Northwestern Polytechnical University, 2019:65-66(in Chinese). [53] LI H, YANG J C, CHEN G Y, et al. Towards intelligent design optimization:Progress and challenge of design optimization theories and technologies for plastic forming[J]. Chinese Journal of Aeronautics, 2021, 34(2):104-123. [54] SILVA C M A, NIELSEN C V, ALVES L M, et al. Environmentally friendly joining of tubes by their ends[J]. Journal of Cleaner Production, 2015, 87:777-786. [55] ALVES L M, MARTINS P A F. Tube branching by asymmetric compression beading[J]. Journal of Materials Processing Technology, 2012, 212(5):1200-1208. [56] GONÇALVES A, ALVES L M, MARTINS P A F. Tube joining by asymmetric plastic instability[J]. Journal of Materials Processing Technology, 2014, 214(1):132-140. [57] ALVES L M, SILVA C M A, MARTINS P A F. Joining of tubes by internal mechanical locking[J]. Journal of Materials Processing Technology, 2017, 242:196-204. [58] YU H Y, LI J X, HE Z Z. Formability assessment of plastic joining by compression instability for thin-walled tubes[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(9-12):3423-3430. [59] 李光俊, 兰勇, 孙林, 等. 柔性组合夹具在飞机导管数字化快速制造中的应用[J]. 航空制造技术, 2012, 55(9):58-61. LI G J, LAN Y, SUN L, et al. Application of flexible combine-clamp in digital rapid production for aircraft tube[J]. Aeronautical Manufacturing Technology, 2012, 55(9):58-61(in Chinese). [60] 樊伟, 郑联语, 王亚辉, 等. 管路组件可重构装配工装系统的定位器自动配置与性能分析[J]. 航空学报, 2018, 39(5):421793. FAN W, ZHENG L Y, WANG Y H, et al. Automatic configuration and performance analysis of locators for reconfigurable assembly fixture system of pipeline components[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):421793(in Chinese). [61] 顾城歌, 徐晓坤, 周志宇, 等. 数字空间中管路协调建模与求解[J]. 机械设计与制造, 2020(9):221-225. GU C G, XU X K, ZHOU Z Y, et al. Pipeline coordination modeling and solving in digital space[J]. Machinery Design & Manufacture, 2020(9):221-225(in Chinese). [62] 刘江省. 面向管路系统设计的虚拟装配技术的研究[D]. 哈尔滨:哈尔滨工业大学, 2007:104-105. LIU J X. Research on virtual assembly technique for pipeline design[D]. Harbin:Harbin Institute of Technology, 2007:104-105(in Chinese). [63] 樊伟, 郑联语, 王亚辉. 面向管路组件装配的自动化可重构柔性工装系统[J]. 计算机集成制造系统, 2018, 24(11):2686-2700. FAN W, ZHENG L Y, WANG Y H. Automatic reconfigurable and flexible fixture system for pipeline components in assembly process[J]. Computer Integrated Manufacturing Systems, 2018, 24(11):2686-2700(in Chinese). [64] LI S Q. Mixed reality-based interactive technology for aircraft cabin assembly[J]. Chinese Journal of Mechanical Engineering, 2009, 22(3):403. [65] 唐健钧, 叶波, 耿俊浩. 飞机装配作业AR智能引导技术探索与实践[J]. 航空制造技术, 2019, 62(8):22-27. TANG J J, YE B, GENG J H. Exploration and practice of aircraft assembly AR intelligent pilot technology[J]. Aeronautical Manufacturing Technology, 2019, 62(8):22-27(in Chinese). [66] 张秋月, 安鲁陵. 虚拟现实和增强现实技术在飞机装配中的应用[J]. 航空制造技术, 2017, 60(11):40-45. ZHANG Q Y, AN L L. Application of virtual reality and augment reality in aircraft assembly[J]. Aeronautical Manufacturing Technology, 2017, 60(11):40-45(in Chinese). [67] 张天. 基于多目视觉的管路数字化测量方法研究[D]. 北京:北京理工大学, 2014:129-131. ZHANG T. Research on multi-vision-based digitized measurement method for pipelines[D]. Beijing:Beijing Institute of Technology, 2014:129-131(in Chinese). [68] 罗月迎, 王雅萍, 朱目成. 船用弯管几何参数的机器视觉测量方法研究[J]. 机械设计与制造, 2015(6):55-58. LUO Y Y, WANG Y P, ZHU M C. The study for the marine pipe geometric parameter measurement method based on machine vision[J]. Machinery Design & Manufacture, 2015(6):55-58(in Chinese). [69] 谭本能, 唐纯纯. 航空导管的数字化测量方法研究[J]. 航空精密制造技术, 2018, 54(6):25-27. TAN B N, TANG C C. Research of digital measurement method for aircraft tubes[J]. Aviation Precision Manufacturing Technology, 2018, 54(6):25-27(in Chinese). [70] LI G J, YANG J C, HUANG D, et al. Study on a digital inspection method for aircraft tubing assembly[M]//Mechanical Engineering and Materials. Cham:Springer International Publishing, 2021:41-48. [71] 丁建春, 王细波, 杨燕, 等. 拧紧力矩对典型管接头密封带宽度影响研究[J]. 强度与环境, 2012, 39(2):9-13. DING J C, WANG X B, YANG Y, et al. Research on the effect of tightening torque to the seal width of a typical pipe Tie-in[J]. Structure & Environment Engineering, 2012, 39(2):9-13(in Chinese). [72] 中国航空工业总公司. 飞机液压管路系统设计、安装要求:HB 6755-1993[S]. 北京:中国航空工业总公司,1994. CHINA AVIATION INDUSTRY CORPORATION. Design and installation requirements of aircraft hydraulic pipeline system:HB 6755-1993[S]. Beijing:China Aviation Industry Corporation,1994(in Chinese). [73] 国防科学技术工业委员会. 24°无扩口导管安装拧紧控制及试验要求:HB 7000-2008[S]. 北京:中国航空综合技术研究所, 2008:1-2. Commission of Science, Technology and Industry for National Defense. 24° no-expansion catheter installation and tightening control and test requirements:HB 7000-2008[S]. Beijing:China Institute of Comprehensive Aviation Technology, 2008:1-2(in Chinese). [74] 於为刚. 装配应力对飞机管路密封性能的影响分析及其检测方法研究[D]. 南京:南京航空航天大学, 2019:79-81. YU W G. Analysis of influence of assembly stress on aircraft pipeline sealing performance and its detection method[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019:79-81(in Chinese). [75] 衡波志. 飞机液压系统连接件及管路的有限元仿真分析[D]. 南京:南京航空航天大学, 2014:41-42. HENG B Z. Finite element analysis of pipeline and connection in aircraft's hydraulic system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014:41-42(in Chinese). [76] 周鑫, 庞贺伟, 刘宏阳, 等. 装配误差对球面密封结构密封状态影响分析[J]. 航天器工程, 2005, 14(4):35-39. ZHOU X, PANG H W, LIU H Y, et al. Analysis of assembly error on sealing state of spherical sealing structure[J]. Spacecraft Engineering, 2005, 14(4):35-39(in Chinese). [77] 王晶, 陈果, 郑其辉, 等. 飞机液压管道初始装配应力仿真[J]. 航空计算技术, 2012, 42(6):54-57. WANG J, CHEN G, ZHENG Q H, et al. Simulation of initial assembly stress for aircraft hydraulic pipeline[J]. Aeronautical Computing Technique, 2012, 42(6):54-57(in Chinese). [78] 程小勇, 陈果, 刘明华, 等. 初始安装应力对管道固有频率的影响分析及试验验证[J]. 中国机械工程, 2015, 26(4):512-517. CHENG X Y, CHEN G, LIU M H, et al. Analysis and experimental verification to effects of pipe initial installation stress on pipe's natural frequencies[J]. China Mechanical Engineering, 2015, 26(4):512-517(in Chinese). [79] 冉光斌. 双锥形管接头密封管路联接结构的稳健设计方法[D]. 北京:中国工程物理研究院, 2005:41-42. RAN G B. Robust design method of the sealing pipeline joint structure with double-cone pipe union[D]. Beijing:China Academy of Engineering Physics,2005:41-42(in Chinese). [80] 刘言, 孙洪涛, 徐祗伟. 工程机械液压系统管接头常用密封形式[J]. 工程机械与维修, 2017(10):75-77. LIU Y, SUN H T, XU Z W. Common sealing form of hydraulic system pipe joint of engineering machinery[J]. Construction Machinery & Maintenance, 2017(10):75-77(in Chinese). [81] 闵冬翌. 锥形管接头密封结构非概率可靠性稳健设计[D]. 北京:中国工程物理研究院, 2016:41-42. MIN D Y. Non-probabilistic robust design of cone pipe joint sealing structure[D]. Beijing:2016:41-42(in Chinese). [82] 李晓东. 可分离式航空液压管接头密封特性研究[D]. 大连:大连理工大学, 2018:57-58. LI X D. Sealing performance of separable aviation hydraulic fittings[D]. Dalian:Dalian University of Technology, 2018:57-58(in Chinese). [83] 李玉婷. 柴油机高压油管密封性能分析[D]. 北京:北京理工大学, 2015:101-103. LI Y T. Analysis on sealing performance of high pressure fuel pipe of diesel engine[D]. Beijing:Beijing Institute of Technology, 2015:101-103(in Chinese). [84] 张志广. 箭体管路接头可靠性连接量化研究[D]. 哈尔滨:哈尔滨工业大学, 2011:33-34. ZHANG Z G. The quantitative reliability of the pipe connectors in the rocket body[D]. Harbin:Harbin Institute of Technology, 2011:33-34(in Chinese). [85] 闫洋洋. 航空卡套式管接头密封特性与振动失效机理研究[D]. 大连:大连理工大学, 2019:108-110. YAN Y Y. Analysis on sealing properties and vibration failure mechanism of aviation ferrule pipeline fittings[D]. Dalian:Dalian University of Technology, 2019:108-110(in Chinese). [86] 何勃. 管路接头密封可靠性研究[D]. 西安:西北工业大学, 2016:75-75. HE B. Sealing reliability study for pipe joint[D]. Xi'an:Northwestern Polytechnical University, 2016:75-75(in Chinese). [87] SAE INTERNATIONAL. Fittings, tube, fluid system, separable, high pressure dynamic beam seal, 5000/8000 psi, general specification for:AS85720A[S]. New York:SAE Committee G-3, 2008:1-22. [88] 陈芝来. 航空发动机管路连接件典型结构密封性能研究[D]. 上海:上海交通大学, 2017:74-76. CHEN Z L. Study on seal performance of typical structure of areoengine tube connection[D]. Shanghai:Shanghai Jiao Tong University, 2017:74-76(in Chinese). [89] JEON J Y, KIM B T. A study on contact characteristics by the geometry variation of beam seal fitting of an aircraft fuel hose[J]. Journal of the Korean Society of Manufacturing Process Engineers, 2013, 12(6):101-108. [90] 陈果, 罗云, 郑其辉, 等. 复杂空间载流管道系统流固耦合动力学模型及其验证[J]. 航空学报, 2013, 34(3):597-609. CHEN G, LUO Y, ZHENG Q H, et al. Fluid-structure coupling dynamic model of complex spatial fluid-conveying pipe system and its verification[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):597-609(in Chinese). [91] 王彬文, 陈先民, 苏运来, 等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报, 2021, 42(5):524651. WANG B W, CHEN X M, SU Y L, et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524651(in Chinese). [92] LANOUE F, VADEAN A, SANSCHAGRIN B. Finite element analysis and contact modelling considerations of interference fits for fretting fatigue strength calculations[J]. Simulation Modelling Practice and Theory, 2009, 17(10):1587-1602. [93] VINGSBO O, SÖDERBERG S. On fretting maps[J]. Wear, 1988, 126(2):131-147. [94] FOLETTI S, BERETTA S, GURER G. Defect acceptability under full-scale fretting fatigue tests for railway axles[J]. International Journal of Fatigue, 2016, 86:34-43. [95] JUUMA T. Torsional fretting fatigue strength of a shrink-fitted shaft with a grooved hub[J]. Tribology International, 2000, 33(8):537-543. [96] POURHEIDAR A, REGAZZI D, CERVELLO S, et al. Fretting fatigue analysis of full-scale railway axles in presence of artificial micro-notches[J]. Tribology International, 2020, 150:106383. [97] ZHANG Y B, LU L T, ZOU L, et al. Finite element simulation of the influence of fretting wear on fretting crack initiation in press-fitted shaft under rotating bending[J]. Wear, 2018, 400-401:177-183. [98] 程小勇. 飞机液压导管疲劳实验与应力控制技术研究[D]. 南京:南京航空航天大学, 2014:48-49. CHENG X Y. Study on fatigue test and stress control techniques of aircraft hydraulic pipelines[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014:48-49(in Chinese). [99] 高镇同, 熊峻江. 疲劳/断裂可靠性研究现状与展望[J]. 机械强度, 1995, 17(3):61-82. GAO Z T, XIONG J J. The present situation and prospects for the fatigue/fracture reliability study[J]. Journal of Mechanical Strength, 1995, 17(3):61-82(in Chinese). [100] US-ASTM. Standard practice for statistical analysis of linear or linearized stress-life(S-N) and strain-life(E-N) fatigue data:ASTM E739-2010(2015)[S]. West Conshohocken:ASTM Standard, 2010. [101] 中华人民共和国航空航天工业部. 飞机液压导管及连接件弯曲疲劳试验:HB 6442-90[S]. 北京:中国航空综合技术研究所, 1990. Ministry of Aerospace Industry, China. Aircraft hydraulic catheter and connector bending fatigue test:HB 6442-90[S]. Beijing:China Institute of Integrated Aviation Technology, 1990(in Chinese). [102] 陈蓄, 柳进. 航空液压导管弯曲振动试验方法[J]. 航空学报, 1990, 11(11):641-643. CHEN X, LIU J. Flexure vibration test method of aviation tube[J]. Acta Aeronautica et Astronautica Sinica, 1990, 11(11):641-643(in Chinese). [103] 舒送. 无扩口连接航空导管旋转弯曲疲劳试验研究[D]. 沈阳:沈阳航空航天大学, 2011:63-64. SHU S. Research of rotary bending fatigue test for no flaring connection of aviation conduit[D]. Shenyang:Shenyang Aerospace University, 2011:63-64(in Chinese). [104] 刘明星, 刘志峰, 宋守许. 基于ABAQUS/fe-safe的服役后轴类零件疲劳分析方法[J]. 机械设计与制造, 2012(9):72-74. LIU M X, LIU Z F, SONG S X. Fatigue analysis method of used shaft parts based on ABAQUS/fe-safe[J]. Machinery Design & Manufacture, 2012(9):72-74(in Chinese). [105] 张淼, 袁锋, 孟庆春, 等. 轴对称构件疲劳损伤演化方程与寿命预估方法的改进[J]. 应用力学学报, 2008, 25(3):489-493, 546. ZHANG M, YUAN F, MENG Q C, et al. Improvement of damage evolution equation and method for fatigue life prediction of axial-symmetrical specimens[J]. Chinese Journal of Applied Mechanics, 2008, 25(3):489-493, 546(in Chinese). [106] 张淼, 孟庆春, 张行. 无扩口管路连接件疲劳寿命预估的损伤力学-有限元法[J]. 航空学报, 2009, 3(3):435-443. ZHANG M, MENG Q C, ZHANG X. Damage mechanics-finite element method for fatigue life prediction of flare-free pipeline connection assemblies[J]. Acta Aeronautica et Astronautica Sinica, 2009, 3(3):435-443(in Chinese). [107] 徐明波, 柳鸿飞, 高玉魁. 40CrNi2Si2MoVA钢机械加工与喷丸试样旋转弯曲疲劳寿命的预测方法[J]. 航空材料学报, 2020, 40(1):87-92. XU M B, LIU H F, GAO Y K. Prediction method of rotating-bending fatigue life of 40CrNi2Si2MoVA steel specimens after machining and shot peening[J]. Journal of Aeronautical Materials, 2020, 40(1):87-92(in Chinese). |