[1] BIANCHI D, NERI A. Numerical simulation of chemical erosion in VEGA launcher solid-propellant rocket motor nozzles:AIAA-2015-4175[R]. Reston:AIAA, 2015. [2] 杨飞, 李振海, 李建昌. 固体火箭发动机喷管型面的研究进展[J]. 真空, 2020, 57(1):40-47. YANG F, LI Z H, LI J C. Latest studies on solid rocket engine nozzle profile[J]. Vacuum, 2020, 57(1):40-47(in Chinese). [3] 王艺杰, 鲍福廷, 杜佳佳. 固体火箭发动机喷管分离流动数值模拟及试验研究[J]. 固体火箭技术, 2010, 33(4):406-408. WANG Y J, BAO F T, DU J J. Numerical simulation and experiment of flow separation in SRM nozzle[J]. Journal of Solid Rocket Technology, 2010, 33(4):406-408(in Chinese). [4] XIAO Q, TSAI H M, PAPAMOSCHOU D. Numerical investigation of supersonic nozzle flow separation[J]. AIAA Journal, 2007, 45(3):532-541. [5] 李波, 王一白, 杨立军, 等. 尾部二次喷流抑制喷管分离流动的数值研究[J]. 航空动力学报, 2013, 28(11):2615-2620. LI B, WANG Y B, YANG L J, et al. Numerical investigation of nozzle flow separation control by injecting secondary jet from nozzle exit[J]. Journal of Aerospace Power, 2013, 28(11):2615-2620(in Chinese). [6] 马宏瑞, 张扬军, 郑孟伟, 等. 双钟型喷管高度补偿特性的数值分析[J]. 推进技术, 2003, 24(6):505-508. MA H R, ZHANG Y J, ZHENG M W, et al. Numerical analysis on the performance of dual-bell nozzle[J]. Journal of Propulsion Technology, 2003, 24(6):505-508(in Chinese). [7] STARK R, GéNIN C, SCHNEIDER D, et al. Ariane 5 performance optimization using dual-bell nozzle extension[J]. Journal of Spacecraft and Rockets, 2016, 53(4):743-750. [8] SATO M, MORIYA S I, TADANO M, et al. Experimental study on transitional phenomena of extendible nozzle:AIAA-2007-5471[R]. Reston:AIAA, 2007. [9] BOCCALETTO L. Solving the flow separation issue:A new nozzle concept:AIAA-2008-5234[R]. Reston:AIAA, 2008. [10] 王艺杰. 固体火箭发动机喷管分离流动数值模拟及试验研究[D]. 西安:西北工业大学, 2010:1-5. WANG Y J. Numerical simulation and experiment of flow separation in SRM nozzles[D]. Xi'an:Northwestern Polytechnical University, 2010:1-5(in Chinese). [11] BOCCALETTO L, REIJASSE P, DUSSAUGE J P. Influence of film cooling injection on transient side loads:AIAA-2007-5474[R]. Reston:AIAA, 2007. [12] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese). [13] 梁斐杰, 陆利蓬, 柳阳威, 等. 等离子体激励位置对抑制压气机角区分离效果的影响[J]. 航空发动机, 2013, 39(4):32-37,50. LIANG F J, LU L P, LIU Y W, et al. Impact of plasma actuating position on control of corner separation of a compressor cascade[J]. Aeroengine, 2013, 39(4):32-37,50(in Chinese). [14] WEST T, HOSDER S. Numerical investigation of plasma actuator configurations for flow separation control at multiple angles of attack:AIAA-2012-3053[R]. Reston:AIAA, 2012. [15] GAN T, WU Y, SUN Z Z, et al. Shock wave boundary layer interaction controlled by surface arc plasma actuators[J]. Physics of Fluids, 2018, 30(5):055107. [16] 严红, 王松. 热激励在超声速进气道内对激波诱导的边界层分离的控制机理[J]. 空气动力学学报, 2014, 32(6):806-813. YAN H, WANG S. Control of shock/boundary layer interaction in supersonic inlet using thermal excitation[J]. Acta Aerodynamica Sinica, 2014, 32(6):806-813(in Chinese). [17] 王宇天, 张百灵, 李益文, 等. 等离子体激励控制激波与边界层干扰流动分离数值研究[J]. 航空动力学报, 2018, 33(2):364-371. WANG Y T, ZHANG B L, LI Y W, et al. Numerical investigation for control of shock wave and boundary layer interactions flow separation with plasma actuation[J]. Journal of Aerospace Power, 2018, 33(2):364-371(in Chinese). [18] 盛佳明,张海灯,吴云,等. 电弧放电等离子体激励控制超声速压气机叶栅激波/边界层干扰仿真研究[J].推进技术, 2020, 41(10):2228-2236. SHENG J M, ZHANG H D, WU Y, et al. Simulation study of arc discharge plasma actuator for supersonic compressor cascade shock wave/boundary layer interaction control[J]. Journal of Propulsion Technology, 2020, 41(10):2228-2236(in Chinese). [19] 高婉宁,张悦,谭慧俊,等.超声速条件下等离子体合成射流对鼓包诱导流场的影响[J]. 推进技术, 2021, 42(3):532-539. GAO W N, ZHANG Y, TAN H J, et al. Effects of plas-ma synthetic jet on bump-induced flow field under su-personic condition[J]. Journal of Propulsion Technology, 2021, 42(3):532-539(in Chinese). [20] HUNTER C. Experimental, theoretical, and computational investigation of separated nozzle flows:AIAA-1998-3107[R]. Reston:AIAA, 1998. [21] NAIR P P, SURYAN A, KIM H D. Computational study on reducing flow asymmetry in over-expanded planar nozzle by incorporating double divergence[J]. Aerospace Science and Technology, 2020, 100:105790. [22] SHYY W, JAYARAMAN B, ANDERSSON A. Modeling of glow discharge-induced fluid dynamics[J]. Journal of Applied Physics, 2002, 92(11):6434-6443. [23] SUN Q, LI Y H, CHENG B Q, et al. The characteristics of surface arc plasma and its control effect on supersonic flow[J]. Physics Letters A, 2014, 378(36):2672-2682. [24] 王浩, 程邦勤, 纪振伟, 等. 局部电弧丝状放电控制激波/边界层干扰的数值研究[J]. 推进技术, 2017, 38(11):2431-2438. WANG H, CHENG B Q, JI Z W, et al. Numerical simulation of localized arc filament plasma actuator for shock wave/boundary layer interaction control[J]. Journal of Propulsion Technology, 2017, 38(11):2431-2438(in Chinese). [25] 王亚骏, 吉洪湖, 陈宝延, 等. 轴对称分开排气喷管改混合排气喷管设计方法[J]. 航空动力学报, 2017, 32(7):1648-1657. WANG Y J, JI H H, CHEN B Y, et al. Modified verison design method of axisymmetric unmixed-flow nozzle to mixed-flow nozzle[J]. Journal of Aerospace Power, 2017, 32(7):1648-1657(in Chinese). |