杨雄1, 李小康1, 郭大伟1, 程谋森1(), 张帆2, 车碧轩1, 雷清雲1
收稿日期:
2023-03-29
修回日期:
2023-04-17
接受日期:
2023-05-07
出版日期:
2024-04-15
发布日期:
2023-05-12
通讯作者:
程谋森
E-mail:mscheng@nudt.edu.cn
基金资助:
Xiong YANG1, Xiaokang LI1, Dawei GUO1, Mousen CHENG1(), Fan ZHANG2, Bixuan CHE1, Qingyun LEI1
Received:
2023-03-29
Revised:
2023-04-17
Accepted:
2023-05-07
Online:
2024-04-15
Published:
2023-05-12
Contact:
Mousen CHENG
E-mail:mscheng@nudt.edu.cn
Supported by:
摘要:
波加热磁等离子体推力器具有适于高功率运行(约100 kWe~1 MWe)、高推力密度(约4×105 N/m2)、可变推力(约1~100 N) 和可变比冲(约3 000~10 000 s)等优点,是适用于未来多种空间任务的高性能电推力器。结合波加热磁等离子体推力器的发展历程,梳理了近年来波加热磁等离子体推力器的国内外研究现状,总结了其发展面临的单程离子回旋共振加热、等离子体分离控制、强磁场中高密度等离子体诊断等理论问题,以及高效热管理、高功率射频电源等工程难点。最后,根据波加热磁等离子体推力器的特点,对其具体应用方向做出了展望。
中图分类号:
杨雄, 李小康, 郭大伟, 程谋森, 张帆, 车碧轩, 雷清雲. 高功率波加热磁等离子体推力器研究现状与展望[J]. 航空学报, 2024, 45(7): 28761-028761.
Xiong YANG, Xiaokang LI, Dawei GUO, Mousen CHENG, Fan ZHANG, Bixuan CHE, Qingyun LEI. Research status and prospect of high⁃power wave⁃heating magnetoplasma thruster[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 28761-028761.
表 2
VASIMR历代型号参数及技术状态
型号 | VX-10 | VX-25 | VX-50 | VX-100 | VX-200 | VF-200 | VX-200SS |
---|---|---|---|---|---|---|---|
功率/kWe | 10 | 25 | 50 | 100 | 200 | 200 | 108×2 |
推力/N | 0.5 | 2.5~4 | 5~8 | 6 | 3×2 | ||
比冲/s | 5 000~10 000 | 3 000~5 000 | 3 000~5 000 | 5 000 | 4 500 | ||
效率/% | 50 | 65 | 72 | 76 | 62 | ||
研制年份 | 1998 | 2002 | 2004 | 2007 | 2009 | 2014 | 2016至今 |
技术状态 | 单元验证 | 单元验证 | 单元验证 | 实验室样机 | 演示样机 | 飞行验证机 | 稳态工作验证机 |
项目支持 | NASA-HiPEP | NASA-HiPEP | NASA-“探路者”计划 | NASA-“探路者”计划 | NASA-NextSTEP |
1 | 耿海, 李婧, 吴辰宸, 等. 空间电推进技术发展及应用展望[J]. 气体物理, 2023, 8(1): 1-16. |
GENG H, LI J, WU C C, et al. Development and application prospect of space electric propulsion technology[J]. Physics of Gases, 2023, 8(1): 1-16 (in Chinese). | |
2 | PALAC D, HORVAT G, JANKOVSKY R, et al. Shrinking the solar system nuclear electric propulsion systems for robotic and human exploration[C]∥ Proceedings of the 1st Space Exploration Conference: Continuing the Voyage of Discovery. Reston: AIAA, 2005. |
3 | RANDOLPH T M, POLK J E. An overview of the Nuclear Electric Xenon Ion System(NEXIS) activity[C]∥ 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2004. |
4 | ELLIOTT F, FOSTER J, PATTERSON M. An overview of the high power electric propulsion (HiPEP) project[C]∥ Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2004. |
5 | HALL S J, FLORENZ R E, GALLIMORE A, et al. Implementation and initial validation of a 100-kWe class nested-channel Hall thruster[C]∥ Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2014. |
6 | FLORENZ R E, HALL S J, GALLIMORE A D,et al. First firing of a 100-kWe nested-channel hall thruster[C]∥ 33rd International Electric Propulsion Conference, 2013. |
7 | 任军学, 刘宇, 王一白. 可变比冲磁等离子体火箭原理与研究进展[J]. 火箭推进, 2007, 33(3): 36-42. |
REN J X, LIU Y, WANG Y B. Principle and research progress of variable specific impulse magnetoplasma rocket[J]. Journal of Rocket Propulsion, 2007, 33(3): 36-42 (in Chinese). | |
8 | Ad Astra Rocket Company. Solar Electric Propulsion (SEP): Comparing the power niches for SEP-VASIMR® and SEP-Hall technologies[R]. Webster: Ad Astra Rocket Company, 2014. |
9 | 李永, 周成, 吕征, 等. 大功率空间核电推进技术研究进展[J]. 推进技术, 2020, 41(1): 12-27. |
LI Y, ZHOU C, LYU Z, et al. Progress on high power space nuclear electric propulsion technology development[J]. Journal of Propulsion Technology, 2020, 41(1): 12-27 (in Chinese). | |
10 | LOVBERG R, DAILEY C. PIT mark V design: AIAA-1991-3571[R]. Reston: AIAA, 1991. |
11 | SQUIRE J P, CHANG-DÍAZ F R, CARTER M D, et al. High power VASIMR experiments using deuterium, neon and argon[C]∥ 30th International Electric Propulsion Conference, 2007. |
12 | BERING E, BRUKARDT M, SQUIRE J, et al. Recent improvements in ionization costs and ion cyclotron heating efficiency in the VASMIR engine[C]∥ Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. |
13 | Longmier B W, SQUIRE J P, CASSADY L D, et al. VASIMR® VX-200 performance measurements and helicon throttle tables using argon and krypton[C]∥ 32nd International Electric Propulsion Conference, 2011. |
14 | 韩先伟,魏建国,孙斌,等. 大推力磁等离子体发动机技术分析与研究进展[C]∥ 第十一届中国电推进技术学术研讨会, 2015. |
HAN X W, WEI J G, SUN B, et al. Technical analysis and research progress of high thrust magnetic plasma engine[C]∥ 11th China Electric Propulsion Conference (CEPC 2015), 2015 (in Chinese). | |
15 | Ad Astra Rocket Company. VASIMR® VX-200SS plasma rocket completes record hour high-power endurance test [R]. Webster: Ad Astra Rocket Company, 2021. |
16 | Ad Astra Rocket Company. La República–El motor de plasma [EB/OL]. (2022-10-07) [2023-05-07]. . |
17 | CORRIGAN A M H, CARTER M D, SQUIRE J P, et al. Enhancing VASIMR® with maturing technologies: AIAA-2018-4503[R]. Reston: AIAA, 2018. |
18 | JACOBS M G, MERRITT S P. High power (200kWe) solar electric propulsion upper stage for in-space transport[C]∥ AIAA Propulsion and Energy Forum. Reston: AIAA, 2018. |
19 | CHAVERS D G, CHANG-DÍAZ F R. Momentum flux measuring instrument for neutral and charged particle flows[J]. Review of Scientific Instruments, 2002, 73(10): 3500-3507. |
20 | GLOVER T W, CHANG-DÍAZ F R, ILIN A. Projected lunar cargo capabilities of high-power VASIMRTM propulsion[C]∥ 30th International Electric Propulsion Conference, 2007. |
21 | 孙青林, 杨雄, 程谋森. 可变比冲磁等离子体推力器搭建及点火验证[C]∥ 第十六届中国电推进技术学术研讨会, 2020. |
SUN Q L, YANG X, CHENG M S. Construction and experimental study on Variable Specific Impulse Magneto-plasma Rocket[C]∥ 16th China Electric Propulsion Conference (CEPC 2020), 2020 (in Chinese). | |
22 | 乔宽, 张清河, 杨雄, 等, 磁约束等离子体参数测量实验研究[C]∥ 第十七届中国电推进技术学术研讨会, 2021. |
QIAO K, ZHANG Q H, YANG X, et al. Experimental study on magnetic confinement plasma parameter measurement[C]∥ 17th China Electric Propulsion Conference (CEPC 2021), 2021 (in Chinese). | |
23 | QIAO K, YANG X, CHENG M S. Experimental study on magnetic confinement plasma parameter measurement of variable ratio magneto plasma rocket[C]∥ First Helicon Plasma Physics and Applications Workshop, 2021. |
24 | 杨振宇, 曹亚文, 范威, 等. 磁等离子体发动机中离子回旋共振天线参数优化[J]. 推进技术, 2022, 43(4): 422-431. |
YANG Z Y, CAO Y W, FAN W, et al. Parameter optimization of ion cyclotron resonance antenna in magnetoplasma rocket engine[J]. Journal of Propulsion Technology, 2022, 43(4): 422-431 (in Chinese). | |
25 | 孙斌, 赵杨, 魏建国, 等. 高功率螺旋波等离子体诊断试验研究[J]. 推进技术, 2019, 40(3): 707-713. |
SUN B, ZHAO Y, WEI J G, et al. Plasma diagnostics of a high power Helicon source[J]. Journal of Propulsion Technology, 2019, 40(3): 707-713 (in Chinese). | |
26 | 韩先伟, 魏建国, 孙斌, 等. 大功率磁等离子体发动机研究进展[C]∥ 第十八届全国等离子体科学技术会议, 2017. |
HAN X W, WEI J G, SUN B, et al. Research progress in high-power Magnetoplasma Rocket Engine[C]∥18th National Conference on Plasma Science and Technology, 2017 (in Chinese). | |
27 | 韩先伟,魏建国,邓永锋, 等. 磁等离子体发动机研究进展[C]∥ 第十二届中国电推进技术学术研讨会, 2016. |
HAN X W, WEI J G, DENG Y F, et al. Research progress of the high thrust magneto-plasma engine[C]∥12th China Electric Propulsion Conference (CEPC 2016), 2016 (in Chinese). | |
28 | 魏建国,孙斌,方吉汉, 等. 磁等离子体发动机磁场仿真计算[C]∥ 第十二届中国电推进技术学术研讨会, 2016. |
WEI J G, SUN B, FANG J H, et al. Numerical simulation on the magnetic field of the high thrust magneto-plasma engine[C]∥ 12th China Electric Propulsion Conference (CEPC 2016), 2016 (in Chinese). | |
29 | 张潞鹏. 大功率等离子体推进器的推力比冲测试研究[D]. 合肥:中国科学技术大学, 2022. |
ZHANG L P. Study on thrust and specific impulse test of high power plasma thruster[D]. Hefei: University of Science and Technology of China, 2022 (in Chinese). | |
30 | 中国科学院合肥物质科学研究院等离子体物理研究所. 等离子体所承担的中科院重点部署项目子课题顺利通过现场测试验收[EB/OL]. (2022-01-25) [2023-05-07]. . |
31 | CHANG-DÍAZ F R, SQUIRE J, BERING E, et al. The VASIMR engine: Project status and recent accomplishments[C]∥ Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004. |
32 | BERING E, BRUKARDT M, CHAN F, et al. Experimental studies of the exhaust plasma of the VASIMR engine[C]∥ Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002. |
33 | BERING E, BRUKARDT M S, RODRIGUEZ W A, et al. Ion dynamics and ICRH heating in the exhaust plasma of the VASIMR engine[C]∥ 53rd International Astronautical Congress, 2002. |
34 | 知族科普. 核聚变火箭:能否实现星际旅行的跨越式发展? [EB/OL]. (2023-07-18) [2024-01-24]. . |
35 | BREIZMAN B N, AREFIEV A V. Single-pass ion cyclotron resonance absorption[J]. Physics of Plasmas, 2001, 8(3): 907-915. |
36 | ILIN A, CHANG-DÍAZ F R, SQUIRE J, et al. Plasma heating simulation in the VASIMR system[C]∥ Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
37 | BERING E, BRUKARDT M, CHANG-DÍAZ F R, et al. Ion acceleration by single pass ion cyclotron heating in the VASIMR engine[C]∥ Proceedings of the 29th International Electric Propulsion Conference, 2005. |
38 | BERING E, CHANG-DÍAZ F R, SQUIRE J P, et al. Observations of single-pass ion cyclotron heating in a trans-sonic flowing plasma[J]. Physics of Plasmas, 2010, 17(4): 043509. |
39 | BERING E, CHANG-DÍAZ F, SQUIRE J, et al. High power ion cyclotron heating in the VASIMR engine[C]∥ Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
40 | BERING E A, CHANG-DÍAZ F R, SQUIRE J P, et al. Electromagnetic ion cyclotron resonance heating in the VASIMR[J]. Advances in Space Research, 2008, 42(1): 192-205. |
41 | SQUIRE J P, OLSEN C S, CHANG-DÍAZ F R, et al. VASIMR® VX-200 operation at 200 kWe and plume measurements: Future plans and an ISS EP test platform[C]∥ 32nd International Electric Propulsion Conference, 2011. |
42 | ANDO A, INUTAKE M, HATANAKA M, et al. Alfvén wave excitation and single-pass ion cyclotron heating in a fast-flowing plasma[J]. Physics of Plasmas, 2006, 13(5): 057103. |
43 | GERWIN R A, MARKLIN G J, SGRO A G, et al. Characterization of plasma flow through magnetic nozzles: ADA221044[R]. Los Alamos: Los Alamos National Laboratory, 1990. |
44 | AREFIEV A V, BREIZMAN B N. Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle[J]. Physics of Plasmas, 2005, 12(4): 043504. |
45 | BREIZMAN B N, TUSHENTSOV M R, AREFIEV A V. Magnetic nozzle and plasma detachment model for a steady-state flow[J]. Physics of Plasmas, 2008, 15(5): 057103. |
46 | CARTER M D, CHANG-DÍAZ F R, ILIN A V, et al. Radio frequency plasma applications for space propulsion[C]∥ International Conference of Electromagnetics in Advanced Space Applications, 1999. |
47 | TERASAKA K, YOSHIMURA S, OGIWARA K, et al. Experimental studies on ion acceleration and stream line detachment in a diverging magnetic field[J]. Physics of Plasmas, 2010, 17(7): 072106. |
48 | HOOPER E B. Plasma detachment from a magnetic nozzle[J]. Journal of Propulsion and Power, 1993, 9(5): 757-763. |
49 | AHEDO E, MERINO M. On plasma detachment in propulsive magnetic nozzles[J]. Physics of Plasmas, 2011, 18(5): 053504. |
50 | OLSEN C S, BALLENGER M G, CARTER M D, et al. Investigation of plasma detachment from a magnetic nozzle in the plume of the VX-200 magnetoplasma thruster[J]. IEEE Transactions on Plasma Science, 2015, 43(1): 252-268. |
51 | ILIN A, CHAN F, SQUIRE J, et al. Simulation of plasma detachment in VASIMR[C]∥ Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002. |
52 | YANG X, HANG G R, CHENG M S, et al. Performance evaluation of a 40-mN Hall thruster using laser-induced flourescence with comprehensive error analysis[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4691-4699. |
53 | 杨雄, 程谋森, 王墨戈. 基于双向偏振态激光诱导荧光方法的离子速度分布函数测量[J]. 光谱学与光谱分析, 2017, 37(8): 2346-2351. |
YANG X, CHENG M S, WANG M G. Ion velocity distribution function measurement based on the method of bidirectional polarized laser induced fluorescence[J]. Spectroscopy and Spectral Analysis, 2017, 37(8): 2346-2351 (in Chinese). | |
54 | 段兴跃. 霍尔推力器中等离子体与通道壁相互作用的机理研究[D]. 长沙: 国防科技大学, 2020: 10. |
DUAN X Y. Investigation on the interaction mechanism between the plasma and the channel wall in the Hall thusters[D].Changsha: National University of Defense Technology, 2020: 10 (in Chinese). | |
55 | QIAO K A, SUN Q L, YANG X, et al. Study on the optical emission spectrum diagnosing of the low-temperature plasma using a collisional-radiative model based on the detailed-term-accounting approximation[J]. Journal of Physics: Conference Series, 2021, 1786(1): 012009. |
56 | STEPHAN U, STEINKE O, USHAKOV A, et al. Design and analysis of first mirror plasma cleaning electrical circuit for Edge Thomson scattering ITER diagnostics[J]. Fusion Engineering and Design, 2022, 177: 113079. |
57 | XU M M, ZHANG Q F, XIE J L. Design of Thomson scattering diagnostic system on linear magnetized plasma device[J]. Plasma Science and Technology, 2022, 24(6): 064008. |
58 | PETRO A. VASIMR plasma rocket technology[R]. Houston: NASA Advanced Space Propulsion Laboratory, 2002. |
59 | NASA. Nonreimbursable space act agreement between Ad Astra Rocket Company and the National Aeronautics and Space Administration for demonstration of the Variable Specific Impulse Magnetoplasma Rocket (VASIMRTM) aboard the international space station [R]. Washington, D.C.: NASA, 2008. |
60 | 韩先伟, 魏建国, 邓永锋, 等. 磁等离子体发动机研究进展[C]∥ 第十一届中国电推进技术学术研讨会, 2015. |
HAN X W, WEI J G, DENG Y F, et al. Research progress of magnetic plasma engine[C]∥ 11th China Electric Propulsion Conference (CEPC 2015), 2015 (in Chinese). | |
61 | CHANG-DÍAZ F R, GIAMBUSSO M, CORRIGAN A M H, et al. Recent progress on the VASIMR® engine[C]∥ 37th International Electric Propulsion Conference, 2022. |
62 | Ad Astra Rocket Company. Ad Astra Rocket Company’s VASIMR® Near Earth Asteroid (NEA) deflection mission[R]. Webster:Ad Astra Rocket Company,2013. |
63 | 张天平, 张伟文, 吴先明, 等. 空间电推进的技术发展及应用[C]∥ 2014中国卫星应用大会, 2014. |
ZHANG T P, ZHANG W W, WU X M, et al. Technological development and application of space electric propulsion [C]∥ China Satellite Application Conference in 2014, 2014 (in Chinese). |
[1] | 黄维康, 张卓然, 达兴亚, 袁培博, 高华敏. 高速对转涵道风扇双驱动电机的热特性[J]. 航空学报, 2024, 45(8): 129048-129048. |
[2] | 孔垂欢, 吴大卫, 谭兆光, 潘立军, 马茹冰, 司江涛. 三翼面验证机纯电方案设计[J]. 航空学报, 2024, 45(6): 629618-629618. |
[3] | 邓景辉. 电动垂直起降飞行器的技术现状与发展[J]. 航空学报, 2024, 45(5): 529937-529937. |
[4] | 王科雷, 周洲, 郭佳豪, 李明浩. 分布式动力翼前飞状态动力/气动耦合特性[J]. 航空学报, 2024, 45(2): 128643-128643. |
[5] | 赵清风, 周洲, 李明浩, 徐德. 分布式动力翼-诱导翼面推进-气动耦合模型[J]. 航空学报, 2024, 45(10): 129252-129252. |
[6] | 高世琦, 丁博, 解旭祯, 李铮, 陈林, 钱首元, 焦子涵, 白光辉. 等离子体激励在高速流动中的减阻机制[J]. 航空学报, 2023, 44(S2): 729373-729373. |
[7] | 马平, 张宁, 石安华, 于哲峰, 梁世昌, 黄洁. 典型微波波段信号在模拟等离子体中的传输特性[J]. 航空学报, 2023, 44(S2): 729476-729476. |
[8] | 宋东彬, 闫炬壮, 杨文将, 白明亮, 刘汝婧, 王少鹏, 刘宇, 田爱梅. 面向电动航空的高温超导电机技术研究发展[J]. 航空学报, 2023, 44(9): 27469-027469. |
[9] | 李小平, 杨敏, 姚博, 刘彦明, 石磊, 刘浩岩, 李乘光. 可重复使用运载火箭再入段星箭协同可靠通信技术[J]. 航空学报, 2023, 44(23): 628906-628906. |
[10] | 刘汝兵, 陈泽帆, 林瑞鑫, 林麒. 等离子体合成射流主动控制平面叶栅叶片流致振动[J]. 航空学报, 2023, 44(20): 128430-128430. |
[11] | 罗振兵, 谢玮, 解旭祯, 周岩, 刘强. 激波及其干扰主动流动控制研究进展[J]. 航空学报, 2023, 44(15): 529002-529002. |
[12] | 陈伟芳, 孙精华, 田得阳, 陈烨斯. 物理化学模型对流场电磁散射特性的影响[J]. 航空学报, 2023, 44(12): 127707-127707. |
[13] | 丁博, 陈真利, 焦子涵, 王锦程, 李铮, 白光辉. 脉冲表面电弧放电对高超声速压缩拐角的非定常控制机理[J]. 航空学报, 2023, 44(12): 127744-127744. |
[14] | 夏济宇, 周洲, 徐德, 王正平. 矢量电推进系统的气动-推进耦合模型[J]. 航空学报, 2023, 44(11): 127672-127672. |
[15] | 谢理科, 梁华, 吴云, 方雨霖, 魏彪, 苏志, 刘雪城, 郑博睿. 等离子体激励与电加热式防冰性能对比[J]. 航空学报, 2023, 44(1): 627971-627971. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学