[1] DUFRENE A, MACLEAN M, PARKER R, et al. Characterization of the new LENS expansion tunnel facility:AIAA-2010-1564[R]. Reston:AIAA, 2010.
[2] HORNUNG H. Experimental hypervelocity flow simulation, needs, achievements, and limitations[C]//1st Pacific International Conference on Aerospace Science and Technology, 1993:1-10.
[3] DUFRENE A, SHARMA M, AUSTIN J M. Design and characterization of a hypervelocity expansion tube facility[J]. Journal of Propulsion and Power, 2007, 23(6):1185-1193.
[4] HOLDEN M S, WADHAMS T P, CANDLER G V. Experimental studies in the LENS shock tunnel and expansion tunnel to examine real-gas effects in hypervelocity flows:AIAA-2004-0916[R]. Reston:AIAA, 2004.
[5] MACLEAN M, WADHAMS T, HOLDEN M. Integration of CFD and experiments in the CUBRC LENS shock tunnel facilities to understand the physics of hypersonic and hypervelocity flows[C]//4th Symposium on Integrating CFD and Experiments in Aerodynamics, 2009:14-16.
[6] RESLER E L, BLOXSOM D E. Very high Mach number flows by unsteady flow principles:Technical Report[R]. Ithaca:Cornell University, 1952.
[7] TRIMPI R L. A preliminary theoretical study of the expansion tube, a new device for producing high-enthalpy short-duration hypersonic gas flows:NASA-TR-R-133[R]. Washington, D.C.:NASA, 1962.
[8] MILLER C G, JONES J J. Development and performance of the NASA Langley research center expansion tube/tunnel, a hypersonic-hypervelocity real-gas facility[C]//14th International Symposium on Shock Tubes and Waves. Sydney:Sydney Shock Tube Symposium Publishers, 1984:363-373.
[9] DUFRENE A, MACLEAN M, PARKER R, et al. Experimental characterization of the LENS expansion tunnel facility including blunt body surface heating:AIAA-2011-0626[R]. Reston:AIAA, 2011.
[10] GILDFIN D E, MORGEN R G, MCGILVRAY M, et al. Simulation of high Mach number scramjet flow conditions using the x2 expansion tube:AIAA-2012-5954[R]. Reston:AIAA, 2012.
[11] BAKOS R, CASTROGIOVANNI A, RODERS C. Dual mode shock-expansion/reflected-shock tunnel:AIAA-1997-0560[R]. Reston:AIAA, 1997.
[12] 高云亮. 超高速流动实验模拟方法及基础气动问题研究[D]. 北京:中国科学院力学研究所, 2008:52-59. GAO Y L. Study on hypervelocity flow generation techniques and essential hypersonic phenomena[D]. Beijing:Institute of Mechanics, Chinese Academy of Sciences, 2008:52-59(in Chinese).
[13] JIANG Z L, GAO Y L, ZHAO W. Performance study on detonation-driven expansion tube:AIAA-2009-7237[R]. Reston:AIAA, 2009.
[14] JIANG Z L, WU B, GAO Y L, et al. Developing the detonation-driven expansion tube for orbital speed experiments[J]. Science China Technological Sciences, 2015, 58(4):695-700.
[15] 武博. 强激波现象与超高速流动实验技术研究[D]. 北京:中国科学院力学研究所, 2012:78-89. WU B. Study on the interaction of strong shock wave and the hypervelocity experimental method[D]. Beijing:Institute of Mechanics, Chinese Academy of Sciences, 2012:78-89(in Chinese).
[16] 周凯, 汪球, 胡宗民, 等. 爆轰驱动膨胀管性能研究[J]. 航空学报, 2016, 37(3):822-828. ZHOU K, WANG Q, HU Z M, et al. Performance study of a detonation-driven expansion tube[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):822-828(in Chinese).
[17] GRAHAM V C, PRAMOD K S, JOSEPH M B. Advances in computational fluid dynamics methods for hypersonic flows[J]. Journal of Spacecraft and Rockets, 2015, 52(1):17-28.
[18] JIANG Z L, ZHAO W, WANG C. Forward-running detonation drivers for high-enthalpy shock tunnels[J]. AIAA Journal, 2002, 40(10):2009-2016.
[19] HU Z M, WANG C, JIANG Z L, et al. Thermo-chemical nonequlibrium phenomena of the strong shock wave to generate hypersonic test flow[J]. International Journal of Modern Physics, 2014, 34:1460383-1-1460383-7.
[20] HU Z M, JIANG Z L. Wave dynamic process in cellular detonation reflection from wedges[J]. Acta Mechanica Sinica, 2007, 23:33-41.
[21] HU Z M, WANG C, JIANG Z L, et al. On the numerical technique for the simulation of hypervelocity test flows[J]. Computer and Fluids, 2015, 106:12-18.
[22] CHUE R S M, BAKOS R J, TSAI C Y, et al. Design of a shock-free expansion tunnel nozzle in HYPULSE[J]. Shock Waves, 2003, 13(4):261-270. |