1 |
乔渭阳. 航空发动机气动声学[M]. 北京: 北京航空航天大学出版社, 2010.
|
|
QIAO W Y. Aeroacoustics of aeroengine[M]. Beijing: Beihang University Press, 2010 (in Chinese).
|
2 |
李志彬, 王晓宇, 孙晓峰, 等. 单级低速轴流压气机噪声特性实验研究[J]. 推进技术, 2018, 39(6): 1275-1282.
|
|
LI Z B, WANG X Y, SUN X F, et al. Experimental research on noise of single-stage low-speed axial compressor[J]. Journal of Propulsion Technology, 2018, 39(6): 1275-1282 (in Chinese).
|
3 |
BROOKS T F, POPE D S, MARCOLINI M A. Airfoil self-noise and prediction: No. L-16528[R]. Washington, D.C.: NASA, 1989.
|
4 |
同航, 黎霖, 卯鲁秦, 等. 波浪前缘静子叶片对高速轴流风扇单音噪声的影响[J]. 航空学报, 2020, 41(10): 123565.
|
|
TONG H, LI L, MAO L Q, et al. Tonal noise reduction of a high-speed single axial fan with wavy leading-edge stator[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123565 (in Chinese).
|
5 |
HOLZINGER F, WARTZEK F, SCHIFFER H P, et al. Self-excited blade vibration experimentally investigated in transonic compressors: Acoustic resonance[J]. Journal of Turbomachinery, 2016, 138(4): 041001.
|
6 |
HOURIGAN K, THOMPSON M C, TAN B T. Self-sustained oscillations in flows around long blunt plates[J]. Journal of Fluids and Structures, 2001, 15(3-4): 387-398.
|
7 |
TAN B T, THOMPSON M C, HOURIGAN K. Sources of acoustic resonance generated by flow around a long rectangular plate in a duct[J]. Journal of Fluids and Structures, 2003, 18(6): 729-740.
|
8 |
HELLMICH B, SEUME J R. Causes of acoustic resonance in a high-speed axial compressor[J]. Journal of Turbomachinery, 2008, 130(3): 031003.
|
9 |
洪志亮, 赵国昌, 杨明绥, 等. 航空发动机压气机内部流体诱发声共振研究进展[J]. 航空学报, 2019, 40(11): 023139.
|
|
HONG Z L, ZHAO G C, YANG M S, et al. Development of flow-induced acoustic resonance in aeroengine compressors[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 023139 (in Chinese).
|
10 |
BROOKS T F, HODGSON T H. Trailing edge noise prediction from measured surface pressures[J]. Journal of Sound and Vibration, 1981, 78(1): 69-117.
|
11 |
ZHU W J, SHEN W Z, SØRENSEN J N, et al. Improvement of airfoil trailing edge bluntness noise model[J]. Advances in Mechanical Engineering, 2016, 8(2): 1-12.
|
12 |
COX J S, BRENTNER K S, RUMSEY C L. Computation of vortex shedding and radiated sound for a circular cylinder: Subcritical to transcritical Reynolds numbers[J]. Theoretical and Computational Fluid Dynamics, 1998, 12(4): 233-253.
|
13 |
LIGHTHILL M J. On sound generated aerodynamically I. General theory[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1952, 211(1107): 564-587.
|
14 |
INOUE O, MORI M, HATAKEYAMA N. Aeolian tones radiated from flow past two square cylinders in tandem[J]. Physics of Fluids, 2006, 18(4): 046101.
|
15 |
INASAWA A, ASAI M, NAKANO T. Sound generation in the flow behind a rectangular cylinder of various aspect ratios at low Mach numbers[J]. Computers & Fluids, 2013, 82: 148-157.
|
16 |
JOHNSON S A, THOMPSON M C, HOURIGAN K. Predicted low frequency structures in the wake of elliptical cylinders[J]. European Journal of Mechanics - B/Fluids, 2004, 23(1): 229-239.
|
17 |
VIJAY K, SRINIL N, ZHU H B, et al. Flow-induced transverse vibration of an elliptical cylinder with different aspect ratios[J]. Ocean Engineering, 2020, 214: 107831.
|
18 |
MAHATO B, GANTA N, BHUMKAR Y G. Numerical investigation of sound generation due to laminar flow past elliptic cylinders[J]. Numerical Mathematics: Theory, Methods and Applications, 2020, 13(1): 27-62.
|
19 |
傅德薰, 马延文, 李新亮. 可压缩湍流直接数值模拟[M]. 北京: 科学出版社, 2010.
|
|
FU D X, MA Y W, LI X L. Direct numerical simulation of compressible turbulence[M]. Beijing: Science Press, 2010 (in Chinese).
|
20 |
LI X L, FU D X, MA Y W, et al. Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp[J]. Science China Physics, Mechanics and Astronomy, 2010, 53(9): 1651-1658.
|
21 |
SEO J H, MITTAL R. A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries[J]. Journal of Computational Physics, 2011, 230(4): 1000-1019.
|
22 |
XIE F, QU Y, ISLAM M A, et al. A sharp-interface Cartesian grid method for time-domain acoustic scattering from complex geometries[J]. Computers & Fluids, 2020, 202: 104498.
|
23 |
ZHANG Y, FANG X, ZOU J, et al. Numerical simulations of shock/obstacle interactions using an improved ghost-cell immersed boundary method[J]. Computers & Fluids, 2019, 182: 128-43.
|
24 |
张阳, 邹建锋, 郑耀. 改进虚拟边界算法在超声速流动问题求解中的应用[J]. 力学学报, 2018, 50(3): 538-552.
|
|
ZHANG Y, ZOU J F, ZHENG Y. An improved ghost-cell immersed boundary method for solving supersonic flow problems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 538-552 (in Chinese).
|
25 |
CHAUDHURI A, HADJADJ A, CHINNAYYA A. On the use of immersed boundary methods for shock/obstacle interactions[J]. Journal of Computational Physics, 2011, 230(5): 1731-1748.
|
26 |
CHAUDHURI A, HADJADJ A, SADOT O, et al. Computational study of shock-wave interaction with solid obstacles using immersed boundary methods[J]. International Journal for Numerical Methods in Engineering, 2012, 89(8): 975-990.
|
27 |
FRANKE R. Scattered data interpolation: Tests of some methods[J]. Mathematics of Computation, 1982, 38(157): 181-200.
|
28 |
TSENG Y H, FERZIGER J H. A ghost-cell immersed boundary method for flow in complex geometry[J]. Journal of Computational Physics, 2003, 192(2): 593-623.
|
29 |
QU Y G, SHI R C, BATRA R C. An immersed boundary formulation for simulating high-speed compressible viscous flows with moving solids[J]. Journal of Computational Physics, 2018, 354: 672-691.
|
30 |
DE TULLIO M D, DE PALMA P, IACCARINO G, et al. An immersed boundary method for compressible flows using local grid refinement[J]. Journal of Computational Physics, 2007, 225(2): 2098-2117.
|
31 |
EHSAN KHALILI M, LARSSON M, MÜLLER B. Immersed boundary method for viscous compressible flows around moving bodies[J]. Computers & Fluids, 2018, 170: 77-92.
|
32 |
CHI C, ABDELSAMIE A, THÉVENIN D. A directional ghost-cell immersed boundary method for incompressible flows[J]. Journal of Computational Physics, 2020, 404: 109122.
|
33 |
BOUKHARFANE R, EUGÊNIO RIBEIRO F H, BOUALI Z, et al. A combined ghost-point-forcing/direct-forcing immersed boundary method (IBM) for compressible flow simulations[J]. Computers & Fluids, 2018, 162: 91-112.
|
34 |
LUO K, MAO C L, ZHUANG Z Y, et al. A ghost-cell immersed boundary method for the simulations of heat transfer in compressible flows under different boundary conditions Part-II: Complex geometries[J]. International Journal of Heat and Mass Transfer, 2017, 104: 98-111.
|
35 |
CIMBALA J M, NAGIB H M, ROSHKO A. Large structure in the far wakes of two-dimensional bluff bodies[J]. Journal of Fluid Mechanics, 1988, 190: 265-298.
|
36 |
POINSOT T J, LELEF S K. Boundary conditions for direct simulations of compressible viscous flows[J]. Journal of Computational Physics, 1992, 101(1): 104-129.
|
37 |
INOUE O, HATAKEYAMA N. Sound generation by a two-dimensional circular cylinder in a uniform flow[J]. Journal of Fluid Mechanics, 2002, 471: 285-314.
|
38 |
KWON K, CHOI H. Control of laminar vortex shedding behind a circular cylinder using splitter plates[J]. Physics of Fluids, 1996, 8(2): 479-486.
|
39 |
WILLIAMSON C H K. Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers[J]. Journal of Fluid Mechanics, 1989, 206: 579-627.
|
40 |
FEY U, KÖNIG M, ECKELMANN H. A new Strouhal⁃Reynolds-number relationship for the circular cylinder in the range 47<Re<2×105 [J]. Physics of Fluids, 1998, 10(7): 1547-1549.
|
41 |
CICATELLI G, SIEVERDING C H. The effect of vortex shedding on the unsteady pressure distribution around the trailing edge of a turbine blade[J]. Journal of Turbomachinery, 1997, 119(4): 810-819.
|
42 |
MA R X, LIU Z S, ZHANG G H, et al. Control of Aeolian tones from a circular cylinder using forced oscillation[J]. Aerospace Science and Technology, 2019, 94: 105370.
|
43 |
LANDAU L D, LIFSHITZ E M. Fluid mechanics[M]. 2nd ed. Oxford: Pergamon Press, 1987.
|
44 |
GOLDSTEIN M E. Aeroacoustics of turbulent shear flows[J]. Annual Review of Fluid Mechanics, 1984, 16: 263-285.
|
45 |
CURLE N. The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1955, 231(1187): 505-514.
|