1 |
姚卫, 张政, 赵伟, 等. 高超声速飞/发一体化进展与趋势[J]. 推进技术, 2023, 44(8): 6-21.
|
|
YAO W, ZHANG Z, ZHAO W, et al. Progress and trend of hypersonic aircraft/engine integration [J]. Journal of Propulsion Technology, 2023, 44(8): 6-21 (in Chinese).
|
2 |
齐伟呈, 程思野, 李堃. 高超声速飞行器及推进系统研究进展[J]. 科技创新与应用, 2022, 12(31): 18-21.
|
|
QI W C, CHENG S Y, LI K. Research progress of hypersonic vehicle and propulsion system[J]. Technology Innovation and Application, 2022, 12(31): 18-21 (in Chinese).
|
3 |
SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28.
|
4 |
陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J]. 中国科学: 技术科学, 2021, 51(11): 1326-1347.
|
|
CHEN J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J]. Scientia Sinica (Technologica), 2021, 51(11): 1326-1347 (in Chinese).
|
5 |
袁先旭, 陈坚强, 杜雁霞, 等. 国家数值风洞(NNW)工程中的CFD基础科学问题研究进展[J]. 航空学报, 2021, 42(9): 625733.
|
|
YUAN X X, CHEN J Q, DU Y X, et al. Research progress on fundamental CFD issues in National Numerical Windtunnel Project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625733 (in Chinese).
|
6 |
ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston: American Institute of Aeronautics and Astronautics, 2006.
|
7 |
SHANG J J S, YAN H. High-enthalpy hypersonic flows[J]. Advances in Aerodynamics, 2020, 2(1): 1-39.
|
8 |
DUAN L, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy[J]. Journal of Fluid Mechanics, 2011, 684: 25-59.
|
9 |
DUAN L, MARTÍN M P. Assessment of turbulence-chemistry interaction in hypersonic turbulent boundary layers[J]. AIAA Journal, 2011, 49(1): 172-184.
|
10 |
DUAN L, MARTIN M P. Effective approach for estimating turbulence-chemistry interaction in hypersonic turbulent boundary layers[J]. AIAA Journal, 2011, 49(10): 2239-2247.
|
11 |
DI RENZO M, URZAY J. Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies[J]. Journal of Fluid Mechanics, 2021, 912: A29.
|
12 |
刘朋欣, 袁先旭, 孙东, 等. 高温化学非平衡湍流边界层直接数值模拟[J]. 航空学报, 2022, 43(1): 124877.
|
|
LIU P X, YUAN X X, SUN D, et al. Direct numerical simulation of high-temperature turbulent boundary layer with chemical nonequilibrium[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124877 (in Chinese).
|
13 |
刘朋欣, 袁先旭, 梁飞, 等. 高温化学非平衡湍流边界层脉动量象限分析[J]. 航空学报, 2021, 42(): 4-15.
|
|
LIU P X, YUAN X X, LIANG F, et al. Quadrant decomposition analysis of fluctuations in high-temperature turbulent boundary layer with chemical non-equilibrium[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(Sup 1): 4-15 (in Chinese).
|
14 |
刘朋欣, 孙东, 李辰, 等. 高焓湍流边界层壁面摩阻产生机制分析[J]. 力学学报, 2022, 54(1): 39-47.
|
|
LIU P X, SUN D, LI C, et al. Analyses on generation mechanism of skin friction in high enthalpy turbulent boundary layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 39-47 (in Chinese).
|
15 |
PASSIATORE D, SCIACOVELLI L, CINNELLA P, et al. Finite-rate chemistry effects in turbulent hypersonic boundary layers: A direct numerical simulation study[J]. Physical Review Fluids, 2021, 6(5): 054604.
|
16 |
PASSIATORE D, SCIACOVELLI L, CINNELLA P, et al. Thermochemical non-equilibrium effects in turbulent hypersonic boundary layers[J]. Journal of Fluid Mechanics, 2022, 941: A21.
|
17 |
ZHANG P, XIA Z H. Contribution of viscous stress work to wall heat flux in compressible turbulent channel flows[J]. Physical Review E, 2020, 102(4): 043107.
|
18 |
WENZEL C, GIBIS T, KLOKER M. About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers[J]. Journal of Fluid Mechanics, 2022, 930: A1.
|
19 |
RENARD N, DECK S. A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer[J]. Journal of Fluid Mechanics, 2016, 790: 339-367.
|
20 |
SUN D, GUO Q L, YUAN X X, et al. A decomposition formula for the wall heat flux of a compressible boundary layer[J]. Advances in Aerodynamics, 2021, 3(1): 1-13.
|
21 |
LI J Y, YU M, SUN D, et al. Wall heat transfer in high-enthalpy hypersonic turbulent boundary layers[J]. Physics of Fluids, 2022, 34(8): 085102.
|
22 |
LI Q, LIU P X, ZHANG H X. Further investigations on the interface instability between fresh injections and burnt products in 2-D rotating detonation[J]. Computers & Fluids, 2018, 170: 261-272.
|
23 |
CASTRO M, COSTA B, DON W S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2011, 230(5): 1766-1792.
|
24 |
GUPTA R, YOS J, THOMPSON R A. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA-RP-1232[R]. Washington D.C.: NASA, 1989.
|
25 |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
|
26 |
ADLER M C, GONZALEZ D R, STACK C M, et al. Synthetic generation of equilibrium boundary layer turbulence from modeled statistics[J]. Computers & Fluids, 2018, 165: 127-143.
|
27 |
ZHANG C, DUAN L A, CHOUDHARI M M. Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers[J]. AIAA Journal, 2018, 56(11): 4297-4311.
|
28 |
JIMENEZ J. Near-wall turbulence[J]. Physical of Fluids, 2013, 25(10): 110814.
|