1 |
FERRI A. Experimental results with airfoils tested in the high speed tunnel at guidonia: NACA TM 946[R]. Washington, D. C.: NACA, 1940.
|
2 |
ADAMS N A. Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Reθ = 1685[J]. Journal of Fluid Mechanics, 2000, 420: 47-83.
|
3 |
WU M, MARTÍN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4): 879-889.
|
4 |
VOLPIANI P S, BERNARDINI M, LARSSON J. Investigating the effects of non-adiabatic walls on shock/boundary-layer interaction at low Reynolds number using direct numerical simulations[C]∥ 2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018.
|
5 |
ZHU X K, YU C P, TONG F L, et al. Numerical study on wall temperature effects on shock wave/turbulent boundary-layer interaction[J]. AIAA Journal, 2017, 55(1): 131-140.
|
6 |
范孝华, 唐志共, 王刚, 等. 激波/湍流边界层干扰低频非定常性研究评述[J]. 航空学报, 2022, 43(1): 625917.
|
|
FAN X H, TANG Z G, WANG G, et al. Review of low-frequency unsteadiness in shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625917 (in Chinese).
|
7 |
段俊亦, 童福林, 李新亮, 等. 压缩-膨胀湍流边界层平均摩阻分解[J]. 航空学报, 2022, 43(1): 625915.
|
|
DUAN J Y, TONG F L, LI X L, et al. Decomposition of mean friction drag in compression-expansion turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625915 (in Chinese).
|
8 |
童福林, 李欣, 于长平, 等. 高超声速激波湍流边界层干扰直接数值模拟研究[J]. 力学学报, 2018, 50(2): 197-208.
|
|
TONG F L, LI X, YU C P, et al. Direct numerical simulation of hypersonic shock wave and turbulent boundary layer interactions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208 (in Chinese).
|
9 |
孙东, 刘朋欣, 沈鹏飞, 等. 马赫数6柱-裙激波/边界层干扰直接模拟[J]. 航空学报, 2021, 42(12): 124681.
|
|
SUN D, LIU P X, SHEN P F, et al. Direct numerical simulation of shock wave/turbulent boundary layer interaction in hollow cylinder-flare configuration at Mach number 6[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 124681 (in Chinese).
|
10 |
沈鹏飞, 刘朋欣, 孙东, 等. 马赫6柱-裙构型激波/湍流边界层干扰摩阻统计特性[J]. 航空学报, 2022, 43(1): 626005.
|
|
SHEN P F, LIU P X, SUN D, et al. Statistical characteristics of skin friction of shock wave/turbulent boundary layer interaction in hollow cylinder-flare configuration at Mach 6[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 626005 (in Chinese).
|
11 |
MARTÍN M P, CANDLER G V. Effect of chemical reactions on decaying isotropic turbulence[J]. Physics of Fluids, 1998, 10(7): 1715-1724.
|
12 |
MARTÍN M P, CANDLER G V. Subgrid-scale model for the temperature fluctuations in reacting hypersonic turbulent flows[J]. Physics of Fluids, 1999, 11(9): 2765-2771.
|
13 |
MARTÍN M P, CANDLER G V. DNS of a Mach 4 boundary layer with chemical reactions[C]∥ 38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000.
|
14 |
DUAN L, MARTÍN M P. Assessment of turbulence-chemistry interaction in hypersonic turbulent boundary layers[J]. AIAA Journal, 2011, 49(1): 172-184.
|
15 |
DUAN L, MARTÍN M P. Procedure to validate direct numerical simulations of wall-bounded turbulence including finite-rate reactions[J]. AIAA Journal, 2009, 47(1): 244-251.
|
16 |
KIM P. Non-equilibrium effects on hypersonic turbulent fornia, Los Angeles, 2016.
|
17 |
刘朋欣, 李辰, 孙东, 等. 考虑化学非平衡效应的高温湍流边界层统计特性分析[J]. 空气动力学学报, 2022, 40(4): 124-131.
|
|
LIU P X, LI C, SUN D, et al. Statistical characteristics of high-temperature turbulent boundary layer considering chemical non-equilibrium effect[J]. Acta Aerodynamica Sinica, 2022, 40(4): 124-131 (in Chinese).
|
18 |
刘朋欣, 袁先旭, 孙东, 等. 高温化学非平衡湍流边界层直接数值模拟[J]. 航空学报, 2022, 43(1): 124877.
|
|
LIU P X, YUAN X X, SUN D, et al. Direct numerical simulation of high-temperature turbulent boundary layer with chemical nonequilibrium[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124877 (in Chinese).
|
19 |
刘朋欣, 孙东, 李辰, 等. 高焓湍流边界层壁面摩阻产生机制分析[J]. 力学学报, 2022, 54(1): 39-47.
|
|
LIU P X, SUN D, LI C, et al. Analyses on generation mechanism of skin friction in high enthalpy turbulent boundary layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 39-47 (in Chinese).
|
20 |
DI RENZO M, URZAY J. Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies[J]. Journal of Fluid Mechanics, 2021, 912: A29.
|
21 |
PASSIATORE D, SCIACOVELLI L, CINNELLA P, et al. Thermochemical non-equilibrium effects in turbulent hypersonic boundary layers[J]. Journal of Fluid Mechanics, 2022, 941: A21.
|
22 |
VOLPIANI P S. Numerical strategy to perform direct numerical simulations of hypersonic shock/boundary-layer interaction in chemical nonequilibrium[J]. Shock Waves, 2021, 31(4): 361-378.
|
23 |
LI Q, LIU P X, ZHANG H X. Further investigations on the interface instability between fresh injections and burnt products in 2-D rotating detonation[J]. Computers & Fluids, 2018, 170: 261-272.
|
24 |
SUN D, GUO Q L, LI C, et al. Assessment of optimized symmetric fourth-order weighted essentially non-oscillatory scheme in direct numerical simulation of compressible turbulence[J]. Computers & Fluids, 2020, 197: 104383.
|
25 |
SUN D, GUO Q L, YUAN X X, et al. A decomposition formula for the wall heat flux of a compressible boundary layer[J]. Advances in Aerodynamics, 2021, 3(1): 1-13.
|
26 |
SUN D, CHEN J Q, LI C, et al. On the wake structure of a micro-ramp vortex generator in hypersonic flow[J]. Physics of Fluids, 2020, 32(12): 126111.
|
27 |
GUPTA R, YOS J, THOMPSON R A. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA 1232[R]. Washington, D.C.: NASA, 1989.
|
28 |
刘朋欣, 袁先旭, 梁飞, 等. 高温化学非平衡湍流边界层脉动量象限分析[J]. 航空学报, 2021, 42(S1): 726338.
|
|
LIU P X, YUAN X X, LIANG F, et al. Quadrant decomposition analysis of fluctuations in high-temperature turbulent boundary layer with chemical non-equilibrium[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726338 (in Chinese).
|
29 |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
|
30 |
ADLER M C, GONZALEZ D R, STACK C M, et al. Synthetic generation of equilibrium boundary layer turbulence from modeled statistics[J]. Computers & Fluids, 2018, 165: 127-143.
|
31 |
DUAN L, BEEKMAN I, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature[J]. Journal of Fluid Mechanics, 2010, 655: 419-445.
|
32 |
DUAN L, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy[J]. Journal of Fluid Mechanics, 2011, 684: 25-59.
|
33 |
PIROZZOLI S, BERNARDINI M, GRASSO F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer[J]. Journal of Fluid Mechanics, 2008, 613: 205-231.
|
34 |
HUANG P G, COLEMAN G N, BRADSHAW P. Compressible turbulent channel flows: DNS results and modelling[J]. Journal of Fluid Mechanics, 1995, 305: 185-218.
|
35 |
ROY C J, BLOTTNER F G. Review and assessment of turbulence models for hypersonic flows[J]. Progress in Aerospace Sciences, 2006, 42(7-8): 469-530.
|
36 |
NEUMANN R D. Special topics in hypersonic flow[M]∥ Aerodynamic Problems of Hypersonic Vehicles. Brussels: Von Karman Inst, 1972.
|
37 |
SIMPSON R L. Turbulent boundary-layer separation[J]. Annual Review of Fluid Mechanics, 1989, 21: 205-232.
|
38 |
SIROVICH L. Turbulence and the dynamics of coherent structures. I. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561-571.
|