[1] BUNKER R S. Gas turbine heat transfer: Ten remaining hot gas path challenges[J]. ASME Journal of Turbomachinery, 2007, 129(2): 441-453.
[2] GILLESPIE D, WANG Z, IRELAND P, et al. Full surface local heat transfer coefficient measurements in a model of an integrally cast impingement cooling geometry[J]. ASME Journal of Turbomachinery, 1996, 120(1): 92-99.
[3] RHEE D H, CHOI J H, CHO H H. Flow and heat (mass) transfer characteristics in an impingement/effusion cooling system with crossflow[J]. ASME Journal of Turbomachinery, 2003, 125(1):74-82.
[4] HONG S K, RHEE D H, CHO H H. Effects of fin shapes and arrangements on heat transfer for impingement/effusion cooling with crossflow[J]. ASME Journal Heat Transfer, 2007, 129(12): 1697-1707.
[5] NAKAMATA C, MIMURA F, MATSUSHITA M, et al. Local cooling effectiveness distribution of an integrated impingement and pin fin cooling configuration[C]//ASME Turbo Expo 2007: Power for Land, Sea and Air. New York: American Society of Mechanical Engineering, 2007: 23-34.
[6] ZHANG J Z, XIE H, YANG C F. Numerical study on of flow and heat transfer of impingement-effusion cooling[J]. Chinese Journal of Aeronautics, 2009, 22(4): 343-348.
[7] 杨谦, 林宇震, 张驰, 等. 发散冷却与冲击/发散冷却的冷却效率对比[J]. 航空动力学报, 2014, 28(2): 268-275. YANG Q, LIN Y Z, ZHANG C, et al. Cooling effectiveness comparison between effusion cooling and impingement/effusion cooling[J]. Journal of Aerospace Power, 2014, 28(2): 268-275(in Chinese).
[8] SHAN Y, ZHANG J Z, XIE G N. Convective heat transfer for multiple rows of impinging air jets with small jet-to-jet spacing in a semi-confined channel[J]. International Journal of Heat and Mass Transfer, 2015, 86: 832-842.
[9] LELAND J E, PONNAPPAN R, KLASING K S. Experimental investigation of an air micro-jet array impingement cooling device[J]. Journal of Thermophysics & Heat Transfer, 2012,16(2): 187-192.
[10] LI P L, KO H S, JENG D Z, et al. Micro film cooling performance[J]. International Journal of Heat and Mass Transfer, 2009, 52(25): 5889-5894.
[11] KIM J, DUNN M G, BARAN A J, et al. Deposition of volcanic materials in the hot sections of two gas turbine engines[J]. Journal of Engineering Gas Turbines and Power, 1993, 115(3): 641-651.
[12] JOVANNVIC M B, DE LANGE H C, VAN STEENHOVEN A A. Influence of laser drilling imperfection on film cooling performances[C]// ASME Turbo Expo2005: Power for Land,Sea and Air. New York: American Society of Mechanical Engineers, 2005: 285-292.
[13] SUNDARAM N, THOLE K A. Effects of surface deposition, hole blockage, and thermal barrier coating spallation on vane endwall film cooling[J]. ASME Journal of Turbomachinery, 2007, 129(3): 599-607.
[14] BUNKER R S. Effect of particle coating blockage on film cooling effectiveness: ASME Paper 2000-GT-0244[R]. New York: ASME, 2000.
[15] NA S, CUNHA F J, CHYU M K, et al. Effects of coating blockage and deposit on film-cooling effectiveness and surface heat transfer: AIAA-2006-0024[R]. Reston: AIAA, 2006.
[16] JOVANOVIC M B, DE LANGE H C, VAN STEENHOVEN A A. Influence of hole imperfection on jet cross flow interaction[J]. International Journal of Heat and Fluid Flow, 2006, 27(1): 42-53.
[17] JOVANOVIC M B, DE LANGE H C, VAN STEENHOVEN A A. Effect of hole imperfection on adiabatic film cooling effectiveness[J]. International Journal of Heat and Fluid Flow, 2008, 29(2): 377-386.
[18] NASIR H, ACHARYA S, EKKAD S V. Improved film cooling from cylindrical angled holes with triangular tabs: Effect of tab orientations[J]. International Journal of Heat and Fluid Flow, 2003, 24(5): 657-668.
[19] YANG C F, ZHANG J Z. Experimental investigation on film cooling characteristics from a row of holes with ridge-shaped tabs[J]. Experimental Thermal and Fluid Science, 2012, 37: 113-120.
[20] PAN C X, ZHANG J Z, HUANG K N. Numerical investigation of partial blockage effect on film cooling effectiveness[J]. Mathematical Problems in Engineering, 2014(6): 1-13.
[21] SMITH C, BARKER B, CLUM C, et al. Deposition in a turbine cascade with combusting flow: ASME GT2010-22855[R]. New York: ASME, 2010.
[22] 周君辉, 张靖周. 涡轮叶栅内粒子沉积特性的数值研究[J]. 航空学报, 2013, 34(11): 2492-2499. ZHOU J H, ZHANG J Z. Numerical investigation on particle deposition characteristic inside turbine cascade[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11): 2492-2499 (in Chinese).
[23] ARTS T, DE ROUVROIT M L, RUTHERFORD A W. Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade: Technical Note 174[R]. New York: Von Karman Institute for Fluid Dynamics, 1990. |