[1] 彭治雨, 石义雷, 龚红明, 等. 高超声速气动热预测技术及发展趋势[J]. 航空学报, 2015, 36(1): 325-345. PENG Z Y, SHI Y L, GONG H M, et al. Hypersonic aeroheating prediction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 325-345 (in Chinese).
[2] WIETING A R. Experimental study of shock wave interference heating on a cylindrical leading edge: NASA-TM-100484[R]. Washington, D.C.: NASA, 1987.
[3] WIETING A R, HOLDEN M S. Experimental study of shock wave interference heating on a cylindrical leading edge at Mach 6 and 8: AIAA-1987-1511[R]. Reston: AIAA, 1987.
[4] THORNTON E A, DECHAUMPHAI P. Finite element prediction of aerothermal-structural interaction of aerodynamically heated panels: AIAA-1987-1610[R]. Reston: AIAA, 1987.
[5] DECHAUMPHAI P, THORNTON E A, WIETING A R. Flow-thermal-structural study of aerodynamically heated leading edges[J]. Journal of Spacecraft and Rockets, 1989, 26(4): 201-209.
[6] LOEHNER R, YANG C, CEBRAL J, et al. Fluid-structure-thermal interaction using a loose coupling algorithm and adaptive unstructured grids: AIAA-1998-2419[R]. Reston: AIAA, 1998.
[7] MILLER B A, CROWELL A R, MCNAMARA J J. Loosely coupled time-marching of fluid-thermal-structural interactions: AIAA-2013-1666[R]. Reston: AIAA, 1998.
[8] 黄唐, 毛国良, 姜贵庆, 等. 二维流场、热、结构一体化数值模拟[J]. 空气动力学学报, 2000, 18(1): 115-119. HUANG T, MAO G L, JIANG G Q, et al. Two dimensional coupled flow-thermal structural numerical simulation[J]. Acta Aerodynamica Sinica, 2000, 18(1): 115-119 (in Chinese).
[9] 夏刚, 刘新建, 程文科, 等. 钝体高超声速气动加热与结构热传递耦合的数值计算[J]. 国防科技大学学报, 2003, 25(1): 35-39. XIA G, LIU X J, CHENG W K, et al. Numerical simulation of coupled aeroheating and solid heat penetration for a hypersonic blunt body[J]. Journal of National University of Defense Technology, 2003, 25(1): 35-39 (in Chinese).
[10] 桂业伟, 袁湘江. 类前缘防热层流场与热响应耦合计算研究[J]. 工程热物理学报, 2002, 23(6): 733-735. GUI Y W, YUAN X J. Numerical simulation on the coupling phenomena of aerodynamic heating with thermal response in the region of the leading edge[J]. Journal of Engineering Thermophysics, 2002, 23(6): 733-735 (in Chinese).
[11] 耿湘人, 张涵信, 沈清, 等. 高速飞行器流场和固体结构温度场一体化计算新方法的初步研究[J]. 空气动力学学报, 2002, 20(4): 422-427. GENG X R, ZHANG H X, SHEN Q, et al. Study on an integrated algorithm for the flowfields of high speed vehicles and the heat transfer in solid structures[J]. Acta Aerodynamica Sinica, 2002, 20(4): 422-427 (in Chinese).
[12] ZHAO X L, SUN Z X, TANG L S, et al.Coupled flow-thermal-structural analysis of hypersonic aerodynamically heated cylindrical leading edge[J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(2): 170-179.
[13] 张兵, 韩景龙. 多场耦合计算平台与高超声速热防护结构传热问题研究[J]. 航空学报, 2011, 32(3): 400-409. ZHANG B, HAN J L. Multi-field coupled computing platform and thermal transfer of hypersonic thermal protection structures[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3): 400-409 (in Chinese).
[14] ZHANG S T, CHEN F, LIU H. Integrated fluid-thermal-structural analysis for predicting aerothermal environment of hypersonic vehicles: AIAA-2014-1394[R]. Reston: AIAA, 2014.
[15] 董维中, 高铁锁, 丁明松, 等. 高超声速飞行器表面温度分布与气动热耦合数值研究[J]. 航空学报, 2015, 36(1): 311-324. DONG W Z, GAO T S, DING M S, et al. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 311-324 (in Chinese).
[16] SILBERBERG M. Chemistry: The molecular nature of matter and change[M]. New York: McGraw-Hill, 2009.
[17] PARK C, LEE S H. Validation of multi-temperature nozzle flow code NOZNT: AIAA-1993-2862[R]. Reston: AIAA, 1993.
[18] FRANCESE A. Numerical and experimental study of UHTC materials for atmospheric re-entry[D]. Napoli: University of Napoli, 2007: 94-95.
[19] ANDERSON J D. Hypersonic and high temperature gas dynamics[M]. New York: McGraw-Hill, 2006: 697-699.
[20] GUPTA R N, YOS M, THOMPSON R A. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal non-equilibrium calculations to 30000 K: NASA TM-101528[R]. Washington, D.C.: NASA, 1989: 13-14.
[21] 阎超, 禹建军, 李君哲. 热流CFD计算中格式和网格效应若干问题研究[J]. 空气动力学报, 2006, 24(1): 125-130. YAN C, YU J J, LI J Z. Scheme effect and grid dependency in CFD computations of heat transfer[J]. Acta Aerodynamica Sinica, 2006, 24(1): 125-130 (in Chinese).
[22] FERRERO P, D'AMBROSIO D. A numerical method for conjugate heat transfer problems in hypersonic flows: AIAA-2008-4247[R]. Reston: AIAA, 2008.
[23] MURTY M C, MANNA P, CHAKRABORTY D. Conjugate heat transfer analysis in high speed flows[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, 227(10): 1672-1681.
[24] ZIMMERMANN J W. Thermophysical properties of ZrB2 and ZrB2-SiC ceramics[J]. Journal of the American Ceramic Society, 2008, 91(5): 1551-2916. |