1 |
YERANEE K, RAO Y. A review of recent studies on rotating internal cooling for gas turbine blades[J]. Chinese Journal of Aeronautics, 2021, 34(7): 85-113.
|
2 |
叶林, 刘存良, 朱安冬, 等. 紧凑凸肋通道对尾缘劈缝气膜冷却特性的影响[J]. 航空学报, 2022, 43(3): 125174.
|
|
YE L, LIU C L, ZHU A D, et al. Influence of compact-ribbed passage on trailing-edge cutback film cooling performance[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 125174 (in Chinese).
|
3 |
姚然. 透平叶片端壁及前缘冷却特性的数值研究[D]. 合肥: 中国科学技术大学, 2021: 1-15.
|
|
YAO R. Numerical study on cooling characteristics of turbine blade end wall and leading edge[D]. Hefei: University of Science and Technology of China, 2021: 1-15. (in Chinese)
|
4 |
王博, 刘洋, 王福德, 等. 航空发动机及燃气轮机涡轮叶片热障涂层技术研究及应用[J]. 航空发动机, 2021, 47(): 25-31.
|
|
WANG B, LIU Y, WANG F D, et al. Research and application of thermal barrier coatings for aeroengine and gas turbine blades[J]. Aeroengine, 2021, 47(Sup 1): 25-31 (in Chinese).
|
5 |
王进, 孙杰, 赵占明, 等. 基于结构参数分析的姊妹孔气膜冷却性能研究[J]. 航空学报, 2021, 42(7): 124775.
|
|
WANG J, SUN J, ZHAO Z M, et al. Research on film cooling performance of sister hole based on structural parameter analysis[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124775 (in Chinese).
|
6 |
NOURIN F N, AMANO R S. Review of gas turbine internal cooling improvement technology[J]. Journal of Energy Resources Technology, 2021, 143(8): 080801.
|
7 |
STRAUßWALD M, ABRAM C, SANDER T, et al. Time-resolved temperature and velocity field measurements in gas turbine film cooling flows with mainstream turbulence[J].Experiments in Fluids, 2020, 62(3): 1-17.
|
8 |
ELFERT M, JARIUS M P, WEIGAND B. Detailed flow investigation using PIV in a typical turbine cooling geometry with ribbed walls[C]∥Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air.Vienna: ASME, 2004: 533-545.
|
9 |
LIOU T M, CHEN C C, CHEN M Y. Rotating effect on fluid flow in two smooth ducts connected by a 180-degree bend[J]. Journal of Fluids Engineering, 2003, 125(1): 138-148.
|
10 |
CHEAH S C, IACOVIDES H, JACKSON D C, et al. LDA investigation of the flow development through rotating U-ducts[J]. Journal of Turbomachinery, 1996, 118(3): 590-596.
|
11 |
ZHENG K, TIAN W, QIN J, et al. An experimental study on the improvements in the film cooling performance by an upstream micro-vortex generator[J]. Experimental Thermal and Fluid Science, 2021, 127: 110410.
|
12 |
万博, 田淑青, 浦健, 等. 高压涡轮工作叶片内部流场特性试验研究[J]. 推进技术, 2022, 43(9): 101-111.
|
|
WAN B, TIAN S Q, PU J, et al. Experimental study on internal flow field of high-pressure turbine working blade[J]. Journal of Propulsion Technology, 2022, 43(9): 101-111 (in Chinese).
|
13 |
ELKINS C J, MARKL M, IYENGAR A, et al. Full-field velocity and temperature measurements using magnetic resonance imaging in turbulent complex internal flows[J]. International Journal of Heat and Fluid Flow, 2004, 25(5): 702-710.
|
14 |
IACCARINO G, ELKINS C J. Rapid techniques for measuring and modeling turbulent flows in complex geometries[M]. Engineering Turbulence Modelling and Experiments 6. Amsterdam: Elsevier, 2005: 3-16.
|
15 |
BENSON M J, BINDON D, COOPER M, et al. Detailed velocity and heat transfer measurements in an advanced gas turbine vane insert using magnetic resonance velocimetry and infrared thermometry[J]. Journal of Turbomachinery, 2022, 144(2): 021009.
|
16 |
SAGLAM S, KREWINKEL R, DOMNICK C, et al. An experimental and numerical investigation of the three-dimensional flow field and heat transfer of a row of impinging jets[C]∥ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York: ASME, 2020, doi: 10.1115/GT2020-15966 .
|
17 |
ELKINS C J, MARKL M, PELC N, et al. 4D Magnetic resonance velocimetry for mean velocity measurements in complex turbulent flows[J].Experiments in Fluids, 2003, 34(4): 494-503.
|
18 |
BRUSCHEWSKI M, WÜSTENHAGEN C, DOMNICK C, et al. Assessment of the flow field and heat transfer in a vane cooling system using magnetic resonance velocimetry, thermochromic liquid crystals, and computational fluid dynamics[J]. Journal of Turbomachinery, 2023, 145(3): 031010.
|
19 |
WÜSTENHAGEN C, DOMNICK C, JOHN K, et al. MRI investigations of internal blade cooling flow and CFD optimization through data matching[C]∥Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. New York: ASME, 2022: 1-12, doi: 10.1115/GT2022-82396 .
|
20 |
BAEK S, RYU J, BANG M, et al. Flow non-uniformity and secondary flow characteristics within a serpentine cooling channel of a realistic gas turbine blade[J]. Journal of Turbomachinery, 2022, 144(9): 091002.
|
21 |
YAPA S D. Turbulent coolant dispersion in the wake of a turbine vane trailing edge[D]. Palo Alto: Stanford University, 2015: 1-82.
|
22 |
SIEKMAN M, HELMER D, HWANG W, et al. A combined CFD/MRV study of flow through a pin bank[C]∥Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. New York: ASME, 2014: 1-10, doi: 10.1115/GT2014-25350 .
|
23 |
BAEK S, LEE S, HWANG W, et al. Experimental and numerical investigation of the flow in a trailing edge ribbed internal cooling passage[J]. Journal of Turbomachinery, 2019, 141(1): 1-9.
|
24 |
TSURU T, ISHIDA K, FUJITA J, et al. Three-dimensional visualization of flow characteristics using a magnetic resonance imaging in a lattice cooling channel[J]. Journal of Turbomachinery, 2019, 141(6): 061003.
|
25 |
WILLIAMS E T, CANIANO D C, DAVIS G, et al. Three dimensional measurements of a turbine blade using magnetic resonance thermometry and magnetic resonance velocimetry[C]∥ASME 2017 International Mechanical Engineering Congress and Exposition. New York: ASME, 2017: 1-15, doi: 10.1115/IMECE2017-71482 .
|
26 |
张归玲, 周铱然, 吴迪, 等. 4D Flow MRI血流动力学成像概述及其临床应用[J]. 放射学实践, 2022, 37(1): 4-9.
|
|
ZHANG G L, ZHOU Y R, WU D, et al. Overview of 4D Flow MRI hemodynamic imaging and its clinical application[J]. Radiologic Practice, 2022, 37(1): 4-9 (in Chinese).
|
27 |
陈宇, 张宇, 周赜辰, 等. 颅内动脉瘤4D Flow MRI与CFD血流动力学参数测量的对比研究[J]. 磁共振成像, 2016, 7(8): 613-617.
|
|
CHEN Y, ZHANG Y, ZHOU Z C, et al. Hemodynamic parameters comparison between 4D Flow MRI and computational fluid dynamics for intracranial aneurysms[J]. Chinese Journal of Magnetic Resonance Imaging, 2016, 7(8): 613-617 (in Chinese).
|
28 |
白琰. 典型涡轮叶片尾缘内通道流动与换热特性研究[D]. 南京: 南京航空航天大学, 2012: 1-38.
|
|
BAI Y. Study on flow and heat transfer characteristics in the inner channel of typical turbine blade trailing edge[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 1-38 (in Chinese).
|
29 |
BIANCHINI C, FACCHINI B, SIMONETTI F, et al. Numerical and experimental investigation of turning flow effects on innovative pin fin arrangements for trailing edge cooling configurations[J]. Journal of Turbomachinery, 2012, 134(2): 021005.
|
30 |
吴伟龙, 徐华昭, 王建华. 涡轮叶片带扰流柱尾缘通道冷气流动的数值分析[J]. 推进技术, 2021, 42(1): 163-172.
|
|
WU W L, XU H Z, WANG J H. Numerical investigation of pin-fin influences on cooling air flow characteristics in turbine blade trailing edge region[J]. Journal of Propulsion Technology, 2021, 42(1): 163-172 (in Chinese).
|
31 |
孔星傲, 吕东, 王晓放, 等. 涡轮叶片径向倾斜尾缘劈缝减阻能力数值研究[J]. 航空动力学报, 2022, doi: 10.13224/j.cnki.jasp.20210307 .
|
|
KONG X A, LU D, WANG X F, et al. Numerical study on flow resistance reducing of turbine blade tilted trailing edge slots[J]. Journal of Aerospace Power, 2022, doi: 10.13224/j.cnki.jasp.20210307 (in Chinese).
|
32 |
张丽, 刘松龄, 朱惠人. 涡轮叶片尾缘扰流柱通道流动换热计算[J]. 推进技术, 2010, 31(5): 593-598.
|
|
ZHANG L, LIU S L, ZHU H R. Computation for the flow and heat transfer properties of a pin fin duct[J]. Journal of Propulsion Technology, 2010, 31(5): 593-598 (in Chinese).
|
33 |
李坤成. 全国医用设备使用人员(MRI医师)上岗考试指南[M]. 北京: 军事医学科学出版社, 2009: 1-98.
|
|
LI K C. Guide to the national examination for medical equipment users (MRI doctors)[M]. Beijing: Military Medical Science Press, 2009: 1-98 (in Chinese).
|
34 |
MARKL M. Velocity encoding and flow imaging[J]. University Hospital Freiburg, Dept of Diagnostic Radiology, 2005: 1-10.
|
35 |
TIMKO L P. Energy Efficient Engine high pressure turbine component test performance report: NASA-CR-168289 [R]. Washington D. C.: NASA, 1984.
|
36 |
MA H T, LIU Y S, LAI Y K, et al. Magnetic resonance velocimetry of a turbine blade with engine-representative internal and film cooling structures[J]. Journal of Turbomachinery, 2023, 145(1): 011004.
|
37 |
ICHIMIYA K, AKINO N, KUNUGI T. A fundamental study of the heat transfer and flow situation around spacers (a single row of several cylindrical rods in cross flow)[J]. International Journal of Heat and Mass Transfer, 1990, 33(11): 2451-2462.
|
38 |
刘作宏. 涡轮叶片柱肋冷却通道流动换热特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2017: 1-107.
|
|
LIU Z H. Study on flow and heat transfer characteristics of cooling channel of turbine blade column rib[D]. Harbin: Harbin Engineering University, 2017: 1-107. (in Chinese)
|
39 |
段敬添, 张科, 徐进, 等. 圆形肋柱通道强化换热流动机理实验研究[J]. 实验流体力学, 2021, 35(4): 10-18.
|
|
DUAN J T, ZHANG K, XU J, et al. Experimental investigation on flow mechanism driving heat transfer enhancement in a channel with circular pin fins[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 10-18 (in Chinese).
|
40 |
罗稼昊, 饶宇, 杨力. 不同流动配置下涡轮叶片交错肋冷却流动传热特性数值模拟[J]. 推进技术, 2021, 42(12): 2789-2798.
|
|
LUO J H, RAO Y, YANG L. Numerical simulation of cooling flow and heat transfer characteristics of turbine blades with staggered ribs under different flow configurations[J]. Journal of Propulsion Technology, 2021, 42(12): 2789-2798 (in Chinese).
|
41 |
周小勇, 谭昱, 江魁明, 等. 编码速率对大脑中动脉PC-MRI测量值的影响[J]. 临床放射学杂志, 2014, 33(8): 1265-1268.
|
|
ZHOU X Y, TAN Y, JIANG K M, et al. Influence of venc on PC-MRI flow velocity measurements of middle cerebral artery[J]. Journal of Clinical Radiology, 2014, 33(8): 1265-1268 (in Chinese).
|