1 |
周靓, 李维浩, 石雅楠, 等. 船舶飞沫结冰研究综述[J]. 舰船科学技术, 2022, 44(10): 1-5.
|
|
ZHOU L, LI W H, SHI Y N, et al. Overview of foreign research on ship spray icing[J]. Ship Science and Technology, 2022, 44(10): 1-5 (in Chinese).
|
2 |
SAMUELSEN E M, EDVARDSEN K, GRAVERSEN R G. Modelled and observed sea-spray icing in Arctic-Norwegian waters[J]. Cold Regions Science and Technology, 2017, 134: 54-81.
|
3 |
FUKUSAKO S, HORIBE A, TAGO M. Ice accretion characteristics along a circular cylinder immersed in a cold air stream with seawater spray[J]. Experimental Thermal and Fluid Science, 1989, 2(1): 81-90.
|
4 |
BHATIA K, KHAN F. A predictive model to estimate ice accumulation on ship and offshore rig[J]. Ocean Engineering, 2019, 173: 68-76.
|
5 |
KULYAKHTIN A. Numerical modelling and experiments on sea spray icing[D]. Norwegian:Norwegian University of Science and Technology, 2014.
|
6 |
DEHGHANI-SANIJ A, MAHMOODI M, DEHGHANI S R, et al. Experimental investigation of vertical marine surface icing in periodic spray and cold conditions[J]. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141(2): 021502.
|
7 |
DESHPANDE S, SÆTERDAL A, SUNDSBØ P A. Experiments with sea spray icing: investigation of icing rates[J]. Journal of Offshore Mechanics and Arctic Engineering, 2024, 146(1): 011601.
|
8 |
MU Z Q, GUO W F, LI Y, et al. Wind tunnel test of ice accretion on blade airfoil for wind turbine under offshore atmospheric condition[J]. Renewable Energy, 2023, 209: 42-52.
|
9 |
VARGAS M, PAPADAKIS M, POTAPCZUK M, et al. Ice accretions on a swept GLC-305 airfoil[C]∥SAE Technical Paper Series. 2002.
|
10 |
STRUK P, AGUI J, RATVASKY T, et al. Ice-crystal icing accretion studies at the NASA propulsion systems laboratory: 10.4271/2019-01-1921 [R]. Washington, D.C.:NASA, 2019
|
11 |
OLESKIW M, HYDE F, PENNA P. In-flight icing simulation capabilities of NRC’s altitude icing wind tunnel[C]∥Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. 2001.
|
12 |
BERTHOUMIEU P, DÉJEAN B, BODOC V, et al. ONERA research icing wind tunnel[C]∥Proceedings of the AIAA Aviation 2022 Forum. 2022.
|
13 |
刘森云, 王桥, 易贤, 等. 3 m×2 m结冰风洞试验技术新进展(2020—2022年)[J]. 空气动力学学报, 2023, 41(1): 57-65.
|
|
LIU S Y, WANG Q, YI X, et al. New progress of 3 m × 2 m icing wind tunnel test technology from 2020 to 2022[J]. Acta Aerodynamica Sinica, 2023, 41(1): 57-65 (in Chinese).
|
14 |
RUFF G A. Analysis and verification of the icing scaling equations[D]. Tennessee: University of Tennessee, 1986.
|
15 |
RUFF G, ANDERSON D. Quantification of ice accretions for icing scaling evaluations[C]∥Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit. 1998.
|
16 |
KIND R, OLESKIW M M. Recent Developments in scaling methods for icing wind tunnel testing at reduced scale[C]∥ICAS Congress Conference. 2002.
|
17 |
ANDERSON D N, FEO A. Ice-accretion scaling using water-film thickness parameters[M]. 2012.
|
18 |
周志宏, 易贤, 桂业伟, 等. 考虑水滴动力学效应的结冰试验相似准则[J]. 实验流体力学, 2016, 30(2): 20-25.
|
|
ZHOU Z H, YI X, GUI Y W, et al. Icing scaling law with the dynamic effects of water droplets[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 20-25 (in Chinese).
|
19 |
易贤, 周志宏, 杜雁霞, 等. 考虑相变时间效应的结冰试验相似参数[J]. 实验流体力学, 2016, 30(2): 14-19.
|
|
YI X, ZHOU Z H, DU Y X, et al. An icing scaling parameter with the effects of phase change time[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 14-19 (in Chinese).
|
20 |
张丽芬, 葛鑫, 张斐, 等. 旋转帽罩结冰相似准则的冰风洞试验研究[J]. 实验流体力学, 2021, 35(4): 52-59.
|
|
ZHANG L F, GE X, ZHANG F, et al. An ice wind tunnel test study on the scaling law of a rotating cone[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 52-59 (in Chinese).
|
21 |
刘宇, 易贤, 王强, 等. 结冰风洞试验混合相似转换方法及其验证[J]. 空气动力学学报, 2021, 39(2): 176-183.
|
|
LIU Y, YI X, WANG Q, et al. A hybrid scaling method for icing wind tunnel and validation[J]. Acta Aerodynamica Sinica, 2021, 39(2): 176-183 (in Chinese).
|
22 |
张晶. 海卤水浓缩过程中锂浓度的变化规律研究[D]. 天津: 天津科技大学, 2012.
|
|
ZHANG J. Research on variation of lithium concentration during the seawater and brine concentration process[D]. Tianjin: Tianjin University of Science & Technology, 2012 (in Chinese).
|
23 |
ANDERSON D.N. Manual of scaling method: NASA/CR-2004-212875 [R]. Washington, D.C.: NASA, 2004.
|
24 |
BRAGG M B. A similarity analysis of the droplet trajectory equation[J]. AIAA Journal, 1982, 20(12): 1681-1686.
|
25 |
Wright W B. User manual for the Nasa Glenn ice accretion code LEWICE vesion 2.0: NASA/CR-1999-209409 [R]. Washington, D.C.: NASA, 1999.
|
26 |
LANGMUIR I, BLODGETT K. Mathematical investigation of water droplet trajectories[R]. Army Air Forces Technical Report. 1946.
|
27 |
BILANIN A, ANDERSON D. Ice accretion with varying surface tension: AIAA-1995-0538 [R] Reston: AIAA, 1993.
|
28 |
FEO A, URDIALES M. Stagnation point probe in a water spray immersed in an airstream: AE/TNO/0452/003/INTA/95 [R]. 1995.
|
29 |
MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42.
|
30 |
任靖豪, 易贤, 王强, 等. 复杂构型水滴收集率的拉格朗日计算方法[J]. 航空动力学报, 2020, 35(12): 2553-2561.
|
|
REN J H, YI X, WANG Q, et al. Lagrangian simulation method of droplet collection efficiency for complex configuration[J]. Journal of Aerospace Power, 2020, 35(12): 2553-2561 (in Chinese).
|
31 |
任靖豪, 王强, 刘宇, 等. 大型商用运输机机翼增升构型水滴撞击特性计算[J]. 空气动力学学报, 2021, 39(1): 52-58, 72.
|
|
REN J H, WANG Q, LIU Y, et al. Numerical simulation of droplet impingement characteristics on a high-lift configuration of a large commercial transport aircraft[J]. Acta Aerodynamica Sinica, 2021, 39(1): 52-58, 72 (in Chinese).
|
32 |
任靖豪, 王强, 李维浩, 等. 基于梯度下降的水滴收集率计算方法[J]. 航空学报, 2023, 44(4): 6-15.
|
|
REN J H, WANG Q, LI W H, et al. A prediction algorithm of collection efficiency based on gradient descent method[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 6-15 (in Chinese).
|
33 |
CHEN N L, HU Y P, JI H H, et al. Hot-air anti-icing heat transfer and surface temperature modeling[J]. AIAA Journal, 2021, 59(9): 3657-3666.
|