张卫国1,2, 唐敏1,2(), 武杰1,2, 彭先敏2, 章贵川2, 聂博文2, 王亮权2, 李超群2
收稿日期:
2024-01-08
修回日期:
2024-01-26
接受日期:
2024-03-21
出版日期:
2024-05-15
发布日期:
2024-03-29
通讯作者:
唐敏
E-mail:tangminwork2020@163.com
基金资助:
Weiguo ZHANG1,2, Min TANG1,2(), Jie WU1,2, Xianmin PENG2, Guichuan ZHANG2, Bowen NIE2, Liangquan WANG2, Chaoqun LI2
Received:
2024-01-08
Revised:
2024-01-26
Accepted:
2024-03-21
Online:
2024-05-15
Published:
2024-03-29
Contact:
Min TANG
E-mail:tangminwork2020@163.com
Supported by:
摘要:
倾转旋翼机是下一代旋翼类飞行器发展的重点方向,其综合了旋翼机和固定翼飞机的优点,但也带来了更加复杂的空气动力学、结构动力学、飞行力学以及气弹耦合问题。风洞试验是认识和研究倾转旋翼机关键气动、结构和飞行问题的重要技术手段,针对国内外倾转旋翼机发展过程中的大量风洞试验进行了综合研究,给出了倾转旋翼机旋翼及其翼型、旋翼/机翼气动干扰、旋翼/机翼气弹稳定性、虚拟飞行等多种类型的试验模拟准则、设备设施、典型结果及主要结论,并结合国内倾转旋翼机的研发需求,提出了国内倾转旋翼机风洞试验技术的发展建议。
中图分类号:
张卫国, 唐敏, 武杰, 彭先敏, 章贵川, 聂博文, 王亮权, 李超群. 倾转旋翼机风洞试验综述[J]. 航空学报, 2024, 45(9): 530114-530114.
Weiguo ZHANG, Min TANG, Jie WU, Xianmin PENG, Guichuan ZHANG, Bowen NIE, Liangquan WANG, Chaoqun LI. Overview of wind tunnel test research on tiltrotor aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 530114-530114.
表 3
国内外全展长倾转旋翼缩比模型试验设施[29-31]
试验设施 | 主要指标 | 模型主要参数 | 试验风洞 | 试验平台功能 |
---|---|---|---|---|
FS TRAM (美国,2001年) | 模型比例:1:4; 旋翼Matip:0.59~0.63; 旋翼直径:2.9 m; 短舱倾角范围:95°~0°/5°(手动调整); 支撑形式:腹撑 | 桨毂:等速万向饺; 旋翼翼型:XN系列; 总距范围:0°~40° 桨叶数量:3片 | NFAC风洞 12 m×24 m试验段 | 获取全机气动干扰数据、流场、噪声数据等 |
ERICA (欧盟,2013年) | 模型比例:1:5; 旋翼Matip:0.49~0.63; 旋翼直径:1.48 m 短舱倾角范围:95°~0°; 支撑形式:尾撑; 旋翼最大功率:104 kW; 外侧机翼角度:90°~0° | 桨毂:无饺式; 旋翼翼型:OA系列; 总距范围:0°~60°; 桨叶数量:4片 | DNW-LLF风洞 S1MA风洞 | 获取全机气动干扰数据,整机性能指标等 |
∅2 m全展长倾转旋翼试验台(中国,2022年) | 模型比例:1:5.4; 旋翼Matip:0.49~0.71; 旋翼直径:2 m 短舱倾角范围:95°~0°; 支撑形式:腹撑; 旋翼最大功率:110 kW | 桨毂:等速万向饺; 旋翼翼型:NACA64系列; 总距范围:0°~60°; 桨叶数量:3片 | FL-13风洞 FL-19风洞 | 获取全机气动干扰数据,整机性能指标等 |
表 5
美国全尺寸倾转旋翼试验设施[55-57]
试验设施 | 试验年份 | 全机主要参数 | 风洞/场地 | 试验目的 |
---|---|---|---|---|
XV-3全尺寸试验 | 1955—1968 | 旋翼直径:7 m 旋翼翼型:NACA0015 旋翼桨叶数量:2片 机翼翼型:NACA23021 桨毂形式:跷跷板式 | Outdoor Aerodynamic Research Facility (OARF)地面悬停; NFAC风洞 12 m×24 m试验段 | 第1次试验,验证桨毂形式,解决振动发散问题; 第2次试验,旋翼及机翼刚度验证; 第3次试验,最大飞行速度考核; 第4次试验,回转颤振及动力学分析方法验证 |
XV-15全尺寸试验 | 1977 | 旋翼直径:7.6 m 旋翼翼型:NACA64系列 旋翼桨叶数量:3片 机翼翼型:NACA64A223 桨毂形式:万向饺式 | OARF地面悬停; NFAC风洞 12 m×24 m试验段 | 试飞前的整机地面综合验证 |
1 | 倪先平. 直升机手册[M]. 北京: 航空工业出版社, 2003: 187-189. |
NI X P. Helicopter manual[M]. Beijing: Aviation Industry Press, 2003: 187-189 (in Chinese). | |
2 | 王适存. 面向 21 世纪的直升机发展[J]. 南京航空航天大学学报, 1997, 29(6): 7-12. |
WANG S C. Helicopter development facing the 21st century[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1997, 29(6): 7-12 (in Chinese). | |
3 | FOSTER M. Evolution of tiltrotor aircraft[C]∥AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Reston: AIAA, 2013. |
4 | 邓景辉 .高速直升机关键技术与发展[J].航空学报, 2024, 45(9): 529085. |
DENG J H. Key technologies and development for high- speed helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529085 (in Chinese). | |
5 | 徐敏. 倾转旋翼机的发展与关键技术综述[J]. 直升机技术, 2003(2): 40-44. |
XU M. Summary of development and key technologies of tilt-rotor aircraft[J]. Helicopter Technique, 2003(2): 40-44 (in Chinese). | |
6 | 吴希明. 高速直升机发展现状、趋势与对策[J]. 南京航空航天大学学报, 2015, 47(2): 173-179. |
WU X M. Current status, development trend and countermeasure for high-speed rotorcraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 173-179 (in Chinese). | |
7 | EHINGER R, GEHLER C, ALLEN S. Bell V-280 Valor: A JMR-TD program update[C]∥Proceedings of the 73rd Annual Forum of the American Helicopter Society. 2017. |
8 | HOUSTON S S. The Gyrodyne—A forgotten high performer?[J]. Journal of the American Helicopter Society, 2007, 52(4): 382-391. |
9 | FELKER F F, SIGNOR D B, YOUNG L A, et al. Performance and loads data from a hover test of a 0.658-scale V-22 rotor and wing: NASA-TM-89419 [R]. Moffett Field: NASA Ames Research Center, 1987. |
10 | MAISEL M, GIULIANETTI D, DUGAN D C. The history of the XV-15 tilt rotor research aircraft: From concept to flight: NASA/SP-2000-4517 [R]. Moffett Field: NASA Ames Research Center, 2000. |
11 | THOMASON T. Bell-Boeing JVX tilt rotor program - Flight test program[C]∥Proceedings of the 2nd Flight Testing Conference. Reston: AIAA, 1983. |
12 | POLAK D R, REHM W, GEORGE A R. Effects of an image plane on the tiltrotor fountain flow[J]. Journal of the American Helicopter Society, 2000, 45(2): 90-96. |
13 | YOUNG L A, LILLIE D, MCCLUER M, et al. Insights into airframe aerodynamics and rotor-on-wing interactions from a 0.25-scale tiltrotor wind tunnel model[C]∥AHS International Technical Specialist Meeting on Aerodynamics, Acoustics, and Test and Evaluation. 2002. |
14 | FELKER F F. Wing download results from a test of a 0.658-scale V-22 rotor and wing[J]. Journal of the American Helicopter Society, 1992, 37(4): 58-63. |
15 | BARTIE K, ALEXANDER H, MCVEIGH M, et al. Hover performance tests of baseline metal and advanced technology blade (ATB) rotor systems for the XV-15 tilt rotor aircraft: NASA-CR-177436 [R]. Washington, D.C.: NASA, 1986. |
16 | ALEXANDER H R, MAISEL M D, GIULIANETTID J. The development of advanced technology blades for tiltrotor aircraft[R]. Moffett Field: NASA Ames Research Center, 1986. |
17 | ACREE C W J. Assessment of JVX proprotor performance data in hover and airplane-mode flight conditions: NASA/TM-2016-219070[R]. Moffett Field: NASA Ames Research Center, 2016. |
18 | PIATAK D J, KVATERNIK R G, NIXON M W, et al. A wind-tunnel parametric investigation of tiltrotor whirl-flutter stability boundaries[J]. Journal of the American Helicopter Society, 2022, 47(2): 134-144. |
19 | KOTTAPALLI S B, RUSSELL C R, ACREE C W, et al. Aeroelastic stability analysis of a full-scale isolated proprotor on the tiltrotor test rig[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
20 | 颜大椿. 实验流体力学[M]. 北京: 高等教育出版社, 1992: 27-28. |
YAN D C. Experimental fluid mechanics[M]. Beijing: Higher Education Press, 1992: 27-28 (in Chinese). | |
21 | 黄明其. 直升机风洞试验[M]. 北京: 国防工业出版社, 2014: 31-35. |
HUANG M Q. Helicopter wind tunnel test[M]. Beijing: National Defense Industry Press, 2014: 31-35 (in Chinese). | |
22 | ACREE JR C W. JVX proprotor performance calculations and comparisons with hover and airplane-mode test data: NASA/TM-2009-215380[R]. Washington, D.C.: NASA, 2009. |
23 | HELF S, BROMAN E, GATCHEL S, et al. Full scale hover test of a 25 foot tilt rotor: NASA-CR-114626 [R]. Washington, D.C.: NASA, 1973. |
24 | FELKER F F, BETZINA M D, SIGNOR D B. Performance and loads data from a hover test of a full-scale XV-15 rotor: NASA-TM-86833 [R]. Moffett Field: NASA Ames Research Center, 1985. |
25 | ACREE JR C W, SHEIKMAN A L. Development and initial testing of the tiltrotor test rig[C]∥AHS (American Helicopter Society) Annual Forum and Technology Display. 2018. |
26 | YOUNG L A. Tilt rotor aeroacoustic model (TRAM): A new rotorcraft research facility[C]∥AHS International Meeting on Advanced Rotorcraft Technology and Disaster Relief. 1998. |
27 | BETZINA M D. Rotor performance of an isolated full-scale XV-15 tiltrotor in helicopter mode[C]∥Proceedings of the AHS Aerodynamics, Acoustics, and Test and Evaluation Meeting. 2002. |
28 | KITAPLIOGLU C. Blade-vortex interaction noise of a full-scale XV-15 rotor tested in the NASA Ames 80- by 120-foot wind tunnel[C]∥American Helicopter Society 56th Annual Forum, 1999. |
29 | LEBRUN F, MUNIER D, DECOURS J. ONERA S1MA wind tunnel testing capabilities of a modern tilt rotor[C]∥AHS 71st Annual Forum. 2015. |
30 | MCLUER M S, JOHNSON J L. Full-span tiltrotor aeroacoustic model (FS TRAM) overview and initial testing[C]∥American Helicopter Society Aerodynamics, Acoustics, and Test and Evaluation Specialist Meeting. 2002. |
31 | STABELLINI A, VERNA A, RAGAZZI A, et al. First NICETRIP powered wind tunnel tests successfully completed in DNW-LLF[C]∥AHS International Forum 70th. 2014. |
32 | LEBRUN F, CS O. Wind tunnel high speed powered tests of the ERICA tilt rotor model in S1MA - NICETRIP project [EB/OL]. (2015)[2024-01-05]. |
33 | SCHNEIDER O, PRZYBILLA M, BREHL E, et al. Preparation and execution of the NICETRIP low- and high-speed wind tunnel tests[J]. CEAS Aeronautical Journal, 2016, 7(2): 167-184. |
34 | NANNONI F, GIANCAMILLI G, CICALÈ M. ERICA: The European advanced tiltrotor[C]∥27th European Rotorcraft Form. 2001. |
35 | ALLI P. Erica: The European tiltrotor. Design and critical technology projects[C]∥Proceedings of the AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Reston: AIAA, 2003. |
36 | GIBERTINI G, ZANOTTI A, CAMPANARDI G, et al. Wind-tunnel tests of the ERICA tiltrotor optimised air-intake[J]. The Aeronautical Journal, 2018, 122(1251): 821-837. |
37 | 李尚斌, 江露生, 林永峰. 倾转旋翼机悬停状态气动干扰分析[J]. 工程力学, 2024, 41(3): 232-240. |
LI S B, JIANG L S, LIN Y F. The analysis of aerodynamic interference of tilt rotor aircraft in hover[J]. Engineering Mechanics, 2024, 41(3): 232-240 (in Chinese). | |
38 | 李春华. 时间准确自由尾迹方法建模及(倾转)旋翼气动特性分析[D]. 南京: 南京航空航天大学, 2007: 85-98. |
LI C H. Modeling on time-accurate free wake method and investigation on aerodynamic characteristics of rotor and tiltrotor[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2007: 85-98 (in Chinese). | |
39 | 陈平剑, 林永峰, 黄水林. 倾转旋翼机旋翼/机翼气动干扰的试验研究[J]. 直升机技术, 2008(3): 107-115. |
CHEN P J, LIN Y F, HUANG S L. Experimental study on rotor/wing aerodynamic interaction for tiltrotor aircraft[J]. Helicopter Technique, 2008(3): 107-115 (in Chinese). | |
40 | 招启军, 倪同兵, 李鹏, 等. 倾转旋翼机流动机理及气动干扰特性试验[J]. 航空动力学报, 2018, 33(12): 2900-2912. |
ZHAO Q J, NI T B, LI P, et al. Experiment on flow mechanism and aerodynamic interaction characteristics of tilt-rotor aircraft[J]. Journal of Aerospace Power, 2018, 33(12): 2900-2912 (in Chinese). | |
41 | NASA. Advancement of proprotor technology. Task 2: Wind-tunnel test results: NASA-CR-114363[R]. Washington, D.C.: NASA, 1971. |
42 | MAGEE J, ALEXANDER H. V/STOL tilt rotor aircraft study: wind tunnel tests of a full scale hingeless prop/rotor designed for the Boeing model 222 tilt rotor aircraft: NASA-CR-114664 [R]. Washington, D.C.: NASA, 1973. |
43 | ACREE JR C W, PEYRAN R J, JOHNSON W. Rotor design options for improving XV-15 whirl-flutter stability margins[J]. Journal of the American Helicopter Society, 2001, 46(2): 87-95. |
44 | MARR R L, NEAL G T. Assessment of model testing of a tilt-proprotor VTOL aircraft[C]∥Vertical Flight Society Annual Forum & Technology Display-Forum. 1972. |
45 | POPELKA D, SHEFFLER M, BILGER J. Correlation of test and analysis for the 1/5-scale V-22 aeroelastic model[J]. Journal of the American Helicopter Society, 1987, 32(2): 21-33. |
46 | SETTLE T BEN, KIDD D L. Evolution and test history of the V-22 0.2-scale aeroelastic model[J]. Journal of the American Helicopter Society, 1992, 37(1): 31-45. |
47 | ACREE C W. Effects of V-22 blade modifications on whirl flutter and loads[J]. Journal of the American Helicopter Society, 2005, 50(3): 269. |
48 | KVATERNIK R, KOHN J. An experimental and analytical investigation of proprotor whirl flutter: NASA-TP-1047 [R]. Washington, D.C.: NASA, 1977. |
49 | POPELKA D, LINDSAY D, PARHAM T, et al. Results of an aeroelastic tailoring study for a composite tiltrotor wing[J]. Journal of the American Helicopter Society, 1997, 42(2): 126-136. |
50 | NARAYANAN-NAMPY S, SMITH E. Extension-twist coupled tiltrotor blades using flexible matrix composites[C]∥46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2005. |
51 | NIXON M W, KVATERNIK R G, SETTLE T BEN. Tiltrotor vibration reduction through higher harmonic control[J]. Journal of the American Helicopter Society, 1998, 43(3): 235-245. |
52 | KRESHOCK A R, THORNBURGH R, WILBUR M. Overview of the TiltRotor aeroelastic stability testbed[C]∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022. |
53 | IVANCO T G, KANG H, KRESHOCK A R, et al. Generalized predictive control for active stability augmentation and vibration reduction on an aeroelastic tiltrotor model[C]∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022. |
54 | 董凌华. 倾转旋翼/机翼气弹耦合动力学研究[D]. 南京: 南京航空航天大学, 2011: 69-75. |
DONG L H. Research on aeroelastic dynamics of tiltrotor-wing coupled system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011: 69-75 (in Chinese). | |
55 | 董凌华, 杨卫东, 张呈林. 倾转旋翼/机翼耦合系统过渡状态气弹动力学试验研究[J]. 振动工程学报, 2008, 21(5): 465-470. |
DONG L H, YANG W D, ZHANG C L. Experiment on aeroelastic characteristics of tiltrotor aircraft in transition flight[J]. Journal of Vibration Engineering, 2008, 21(5): 465-470 (in Chinese). | |
56 | THOMASON T. The Bell Helicopter XV-3 and XV-15 experimental aircraft - Lessons learned[C]∥Proceedings of the Aircraft Design, Systems and Operations Conference. Reston: AIAA, 1990. |
57 | WEIBERG J A, MAISEL M D. Wind-tunnel tests of the XV-15 tilt rotor aircraft: NASA-TM-81177 [R]. Washington, D.C.: NASA, 1980. |
58 | KOENIG D G, FIELD M, MORELLI J P. Full-scale prop-rotor stability tests on the XV3 at high advance ratios: NASA/TM-2015-218812[R]. Moffett Field: NASA Ames Research Center, 2015. |
59 | DUGAN D C, ERHART R G, SCHROERS L G. The XV-15 tilt rotor research aircraft: NASA-TM-81244[R]. Washington, D.C.: NASA, 1980. |
60 | Young L A, Yamauchi G K, Booth E R JR, et al. Overview of the testing of a small-scale proprotor[C]∥American Helicopter Society 55th Annual Forum. 1999. |
61 | DE BRUIN A C, SCHNEIDER O. A discussion of measured static and dynamic rotor loads during testing of the ERICA tilt-wing rotorcraft configuration in DNW-LLF wind tunnel[C]∥40th European Rotorcraft Forum. 2014. |
62 | 彭先敏, 黄明其, 章贵川, 等. 风洞试验中旋翼的智能控制技术[J]. 南京航空航天大学学报, 2019, 51(2): 251-256. |
PENG X M, HUANG M Q, ZHANG G C, et al. Intelligent control technology of helicopter rotor in wind tunnel test[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 251-256 (in Chinese). | |
63 | 章贵川, 彭先敏, 车兵辉, 等. 共轴刚性旋翼试验自动配平技术研究[J]. 南京航空航天大学学报, 2019, 51(2): 226-231. |
ZHANG G C, PENG X M, CHE B H, et al. Research on automatic trim technology of coaxial rigid rotor test[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 226-231 (in Chinese). | |
64 | 杨军, 吴希明, 凡永华, 等. 倾转旋翼机飞行控制[M]. 北京: 航空工业出版社, 2006: 36-74. |
YANG J, WU X M, FAN Y H, et al. Flight control of tilt-rotor craft[M]. Beijing: Aviation Industry Press, 2006: 36-74 (in Chinese). | |
65 | LEISHMAN J G. Principles of helicopter aerodynamics[M]. Cambridge: Cambridge University Press, 2000. |
66 | SEDDON J, NEWMAN S. Basic helicopter aerodynamics [M]. 3rd ed. New York: John Wiley & Sons, Ltd, 2011. |
67 | ACREE C W. Vertical climb testing of a full-scale proprotor on the tiltrotor test rig[C]∥Transformative Vertical Flight 2020. 2020. |
68 | EDENBOROUGH H, GAFFEY T, WEIBERG J. Analyses and tests confirm design of proprotor aircraft[C]∥AIAA 4th Aircraft Design, Flight Test, and Operations Meeting. Reston: AIAA, 1972. |
69 | FELKER F F, SIGNOR D B, YOUGH L A, et al. Wing force and surface pressure data from a hover test of a 0.658-scale V-22 rotor and wing: NASA-TM-89419 [R]. Washington, D.C.: NASA, 1987. |
70 | NARRAMORE J. Airfoil design, test and evaluation for the V-22 tilt rotor vehicle[C]∥43rd Annual Forum of the American Helicopter Society. 1987. |
71 | GARDAREIN P, BASSEZP, BEROUL F. Eurofar rotor aerodynamic tests[C]∥18th European Rotorcraft Forum. 1992. |
72 | NARRAMORE J. Advanced technology airfoil development for the XV-15 tilt-rotor vehicle[C]∥AIAA and NASA Ames VSTOL Conference. Reston: AIAA, 1981. |
73 | BEAUMIER P, DECOURS J, LEFEBVRE T. Aerodynamic and aero-acoustic design of modern tilt-rotors: The Onera experience[C]∥Congress of the International Council of the Aeronautical. 2018. |
74 | POISSON-QUINTON P H, COOK W L. A summary of wind tunnel research on tilt rotors from hover to cruise flight[R]. Washington, D.C.: NASA, 1972. |
75 | WELLMAN B. Advanced technology blade testing on the XV-15 tilt rotor research aircraft[C]∥AHS Annual Forum. 1992. |
76 | HOAD D, CONNER D A, RUTLEDGE C K. Acoustic flight test experience with the XV-15 tiltrotor aircraft with the advanced technology blade (ATB)[C]∥14th AIAA Aeroacoustics Conference. Reston: AIAA, 1992. |
77 | HARRIS F D. Hover performance of isolated proprotors and propellers—Experimental data: NASA/CR-2017-219486 [R]. Moffett Field: NASA Ames Research Center, 2017. |
78 | ACREE JR C W. Calculation of JVX Proprotor performance and comparisons with hover and high-speed test data[C]∥AHS Specialist’s Conference on Aeromechanics. 2008. |
79 | FELKER F F, MAISEL M D, BETZINA M D. Full-scale tilt-rotor hover performance[J]. Journal of the American Helicopter Society, 1986, 31(2): 10-18. |
80 | GIBERTINI G, AUTERI F, CAMPANARDI G, et al. Wind-tunnel tests of a tilt-rotor aircraft[J]. The Aeronautical Journal, 2011, 115(1167): 315-322. |
81 | DE GREGORIO F, STEILING D, BENINI E, et al. ERICA tiltrotor airframe wake characterization[C]∥41st European Rotorcraft Forum. 2015. |
82 | BARLA C, FAVIER D, RONDOT C, et al. PIV measurements of the vortical wake behind tilt-rotor blades[C]∥13th International Symposium on Application of Laser Techniques to Fluid Mechanics. 2006. |
83 | YAMAUCHI G K, BURLEY C L, MERCKER E, et al. Flow measurements of an isolated model tilt rotor[C]∥Annual Forum Proceedings-American Helicopter Society. 1999, 55(1): 891-909. |
84 | FELKER F F, LIGHT J S. Aerodynamic interactions between a rotor and wing in hover[J]. Journal of the American Helicopter Society, 1988, 33(2): 53-61. |
85 | FELKER F F, SHINODA P R, SHEEHY H F. Wing force and surface pressure data from a hover test of a 0.658-scale: NASA-TM-102244[R]. Washington, D.C.: NASA, 1990. |
86 | JOHNSON W. Influence of wake models on calculated tiltrotor aerodynamics[C]∥AHS Aerodynamics, Acoustics and Test and Evaluation Technical Specialist Meeting. 2022. |
87 | FELKER F F. A review of tilt rotor download research[R]. Washington, D.C.: NASA, 1988. |
88 | FELKER F F, LIGHT J S. Rotor/wing aerodynamic in-teractions in hover: NASA-TM-88255[R]. Washing-ton, D.C.: NASA, 1986. |
89 | FELKER F. Results from a test of a 2/3-scale V-22 rotor and wing in the 40- by 80-foot wind tunnel[C]∥AHS Annual Forum. 1991. |
90 | FEJTEK I, ROBERTS L. Navier-Stokes computation of wing/rotor interaction for a tilt rotor in hover[J]. AIAA Journal, 1992, 30(11): 2595-2603. |
91 | YOUNG L A, DERBY M R. Rotor/wing interactions in hover: NASA/TM-2002-211392[R]. Washington, D.C.: NASA, 2002. |
92 | MATOS C, REDDY U, KOMERATH N. Rotor wake/fixed wing interactions with flap deflection[C]∥American Helicopter Society 55th Annual Forum. 1999. |
93 | JOHNSON W, YAMAUCHI G, DERBY M, et al. Wind tunnel measurements and calculations of aerodynamic interactions between tiltrotor aircraft[C]∥Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. |
94 | YAMAUCHI G K, WADCOCK A J, DERBY M D, et al. V-22/ship/helicopter aerodynamic interaction phenomena (VSHAIP) wind tunnel test: CA 94035-1000 [R]. Moffett Field: NASA Ames Research Center, 2004. |
95 | SILVA M, YAMAUCHI G K, WADCOCK A J, et al. Wind tunnel measurements and calculations of aerodynamic interactions between helicopters and tiltrotors in a shipboard environment[C]∥American Helicopter Society 4th Decennial Specialist’s Conference on Aeromechanics. 2004. |
96 | JOHNSON W. Dynamics of tilting proprotor aircraft in cruise flight: NASA-TN-D-7677 [R]. Moffett Field: NASA Ames Research Center, 1974. |
97 | GAFFEY T M. The effect of positive pitch-flap coupling (negative δ3) on rotor blade motion stability and flapping[J]. Journal of the American Helicopter Society, 1969, 14(2): 49-67. |
98 | YEAGER W T, KVATERNIK R G. A historical overview of aeroelasticity branch and transonic dynamics tunnel contributions to rotorcraft technology and development: NASA/TM-2001-211054[R]. Moffett Field: NASA Ames Research Center, 2001. |
99 | SUTHERLAND J R, TSAI F, DATTA A. Whirl flutter test of the Maryland tiltrotor rig: Swept-tip blades[C]∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022. |
100 | TSAI F, SUTHERLAND J R, AKINWALE A, et al. Whirl flutter test of the Maryland tiltrotor rig: Overview[C]∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022. |
101 | CHAMBERS J R. Modeling flight: The role of dynamically scaled free-flight models in support of NASA’s aerospace programs: NASA/SP-2009-575[R]. Washington, D.C.: NASA, 2010. |
102 | TOSTI L P. Longitudinal stability and control of a tilt-wing VTOL aircraft with rigid and flapping propeller blades: NASA-TN-D-1365 [R]. Washington, D.C.: NASA, 1962. |
[1] | 孙朋朋, 刘平安, 樊枫, 曾伟. 悬停状态共轴刚性旋翼机身气动干扰特性[J]. 航空学报, 2024, 45(9): 529284-529284. |
[2] | 王畅, 何龙, 徐栋霞, 唐敏, 马率, 吴希明. 共轴刚性旋翼桨毂流动控制减阻研究[J]. 航空学报, 2024, 45(9): 529084-529084. |
[3] | 聂博文, 王亮权, 黄志银, 何龙, 杨仕鹏, 颜鸿涛, 章贵川. 复合式高速无人直升机飞行动力学建模与控制策略设计[J]. 航空学报, 2024, 45(9): 529848-529848. |
[4] | 刘柳, 向先宏, 张宇飞, 陈海昕, 魏闯, 朱剑, 杨普. 一种高升阻比非常规翼身融合燕尾气动布局[J]. 航空学报, 2024, 45(6): 629630-629630. |
[5] | 李海星, 周峰, 颜巍, 白峰, 赵克良. 砂纸冰对民机平尾气动特性的影响[J]. 航空学报, 2024, 45(2): 128657-128657. |
[6] | 李学良, 李创创, 苏伟, 吴杰. 分布式粗糙元对高超声速边界层不稳定性的影响试验[J]. 航空学报, 2024, 45(2): 128627-128627. |
[7] | 刘宇, 秦梦婕, 王强, 易贤. 含盐海水飞沫的结冰风洞试验相似准则[J]. 航空学报, 2023, 44(S2): 729297-729297. |
[8] | 杨秋明, 朱永峰, 陈华伟, 刘晓林. 镂空图案化电加热组件防冰性能试验研究[J]. 航空学报, 2023, 44(S2): 729334-729334. |
[9] | 高世琦, 丁博, 解旭祯, 李铮, 陈林, 钱首元, 焦子涵, 白光辉. 等离子体激励在高速流动中的减阻机制[J]. 航空学报, 2023, 44(S2): 729373-729373. |
[10] | 农历, 盛子帅, 冼军, 张怀宝. 基于高精度算法的结冰翼型分离流动数值模拟[J]. 航空学报, 2023, 44(S2): 729291-729291. |
[11] | 许岭松, 吴渊, 朱东宇, 张付昆, 刘昱. FL⁃61结冰风洞翼型俯仰振荡机构研制[J]. 航空学报, 2023, 44(S2): 729296-729296. |
[12] | 金毅, 孙姝, 郭赟杰, 谭慧俊, 张悦. 超声速可调进气道内流双解现象及其节流特性[J]. 航空学报, 2023, 44(7): 127134-127134. |
[13] | 李俊红, 靳旭红, 刘春风, 苗文博, 程晓丽. 临近空间高速飞行器微量气动力试验及计算[J]. 航空学报, 2023, 44(6): 127072-127072. |
[14] | 曾宪昂, 赵冬强, 李俊杰, 严泽洲, 刘成玉. 弹性机翼阵风减缓控制策略风洞试验[J]. 航空学报, 2023, 44(4): 226869-226869. |
[15] | 刘畅, 张耘隆, 闫指江, 赵磊, 季辰. 锤头体火箭弹性模型脉动压力风洞试验[J]. 航空学报, 2023, 44(23): 128384-128384. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学