1 |
RAND O, KHROMOV V. Compound helicopter: Insight and optimization[J]. Journal of the American Helicopter Society, 2015, 60(1): 1-12.
|
2 |
吴希明. 高速直升机发展现状、趋势与对策[J]. 南京航空航天大学学报, 2015, 47(2): 173-179.
|
|
WU X M. Current status, development trend and countermeasure for high-speed rotorcraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 173-179 (in Chinese).
|
3 |
黄明其, 徐栋霞, 何龙, 等. 常规旋翼构型复合式高速直升机发展概况及关键技术[J]. 航空动力学报, 2021, 36(6): 1156-1168.
|
|
HUANG M Q, XU D X, HE L, et al. Development overview and key technologies of high speed hybrid helicopter with single main rotor[J]. Journal of Aerospace Power, 2021, 36(6): 1156-1168 (in Chinese).
|
4 |
YEO H. Design and aeromechanics investigation of compound helicopters[J]. Aerospace Science and Technology, 2019, 88: 158-173.
|
5 |
THIEMEIER J, ÖHRLE C, FREY F, et al. Aerodynamics and flight mechanics analysis of Airbus Helicopters’ compound helicopter RACER in hover under crosswind conditions[J]. CEAS Aeronautical Journal, 2020, 11(1): 49-66.
|
6 |
ÖHRLE C, FREY F, THIEMEIER J, et al. Coupled and trimmed aerodynamic and aeroacoustic simulations for Airbus Helicopters’ compound helicopter RACER[J]. Journal of the American Helicopter Society, 2019, 64(3): 032003.
|
7 |
FAUST J A, JUNG Y S, BAEDER J, et al. Interactional aerodynamic analysis of an asymmetric lift-offset compound helicopter in forward flight[J]. Journal of the American Helicopter Society, 2021, 66(3): 032011.
|
8 |
YANG K L, HAN D, SHI Q P. Study on the lift and propulsive force shares to improve the flight performance of a compound helicopter [J]. Chinese Journal of Aeronautics, 2022, 35(1): 365-375.
|
9 |
STOKKERMANS T, VELDHUIS L, SOEMARWOTO B, et al. Breakdown of aerodynamic interactions for the lateral rotors on a compound helicopter[J]. Aerospace Science and Technology, 2020, 101: 105845.
|
10 |
FREY F, THIEMEIER J, ÖHRLE C, et al. Aerodynamic interactions on Airbus Helicopters’ compound helicopter RACER in hover[J]. Journal of the American Helicopter Society, 2022, 67(1): 012007.
|
11 |
WANG M S, WANG Y Y, CAO Y H, et al. Numerical simulation of aerodynamic interaction effects in coaxial compound helicopters[J]. Fluid Dynamics & Materials Processing, 2023, 19(5): 1301-1315.
|
12 |
FERGUSON K, THOMSON D. Flight dynamics investigation of compound helicopter configurations[J]. Journal of Aircraft, 2015, 52(1): 156-167.
|
13 |
FERGUSON K, THOMSON D. Examining the stability derivatives of a compound helicopter[J]. The Aeronautical Journal, 2017, 121(1235): 1-20.
|
14 |
YU Z M, KONG W H, CHEN R L. Research on trim control of compound high speed helicopter[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2019, 36(3): 449-458.
|
15 |
CAO Y H, WANG M S, LI G Z. Flight dynamics modeling, trim, stability, and controllability of coaxial compound helicopters[J]. Journal of Aerospace Engineering, 2021, 34(6): 0001342.
|
16 |
ZHAO Y Q, YUAN Y, CHEN R L. Influence of differential longitudinal cyclic pitch on flight dynamics of coaxial compound helicopter[J]. Chinese Journal of Aeronautics, 2023, 36(9): 207-220.
|
17 |
YUAN Y, THOMSON D, CHEN R L, et al. Heading control strategy assessment for coaxial compound helicopters[J]. Chinese Journal of Aeronautics, 2019, 32(9): 2037-2046.
|
18 |
ZHENG F Y, XIONG B W, ZHANG J Y, et al. Improved neural network adaptive control for compound helicopter with uncertain cross-coupling in multimodal maneuver[J]. Nonlinear Dynamics, 2022, 108(4): 3505-3528.
|
19 |
WU M L W, CHEN M. Nonlinear modeling and flight validation of a small-scale compound helicopter[J]. Applied Sciences, 2019, 9(6): 1087.
|
20 |
REDDINGER J P, GANDHI F. Physics-based trim optimization of an articulated slowed-rotor compound helicopter in high-speed flight[J]. Journal of Aircraft, 2015, 52(6): 1756-1766.
|
21 |
REDDINGER J P, GANDHI F, KANG H. Using control redundancy for power and vibration reduction on a compound helicopter at high speeds[J]. Journal of the American Helicopter Society, 2018, 63(3): 032009.
|
22 |
DATTA A, YEO H, NORMAN T R. Experimental investigation and fundamental understanding of a full-scale slowed rotor at high advance ratios[J]. Journal of the American Helicopter Society, 2013, 58(2): 022004.
|
23 |
SEKULA M K, GANDHI F. Effects of auxiliary lift and propulsion on helicopter vibration reduction and trim[J]. Journal of Aircraft, 2004, 41(3): 645-656.
|
24 |
GANDHI F, SEKULA M K. Helicopter vibration reduction using fixed-system auxiliary moments[J]. AIAA Journal, 2004, 42(3): 501-512.
|
25 |
THORSEN A T, HORN J F, OZDEMIR G T. Use of redundant controls to enhance transient response and handling qualities of a compound rotorcraft [C]∥70th American Helicopter Society International Annual Forum 2014. Washington, D.C.: American Helicopter Society International, Inc., 2014.
|
26 |
OZDEMIR G T, HORN J F, THORSEN A T. In-flight multi-variable optimization of redundant controls on a compound rotorcraft: AIAA-2013-5165[R]. Reston: AIAA, 2013.
|
27 |
OZDEMIR G T, HORN J F. Simulation analysis of a flight control law with in-flight performance optimization[C]∥68th American Helicopter Society International Annual Forum 2012. Washington, D.C.: American Helicopter Society International, Inc., 2012.
|
28 |
高子义. 复合式高速直升机飞行动力学建模与控制策略研究[D]. 南京: 南京航空航天大学, 2021.
|
|
GAO Z Y. Research on flight dynamics model and control strategy of compound high-speed helicopter[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese).
|
29 |
曹燕. 复合式高速直升机飞行动力学建模与控制技术研究[D]. 南京: 南京航空航天大学, 2018.
|
|
CAO Y. Research on flight dynamics modeling and control technology for compound high-speed helicopter[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
|
30 |
杨洋. 复合式高速无人直升机飞行力学建模及操纵策略研究[D]. 南京: 南京航空航天大学, 2021.
|
|
YANG Y. Research on flight dynamics and manipulation strategy of compound high speed helicopter[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese).
|
31 |
邓柏海, 徐锦法. 复合式无人直升机姿态自抗扰控制[J]. 北京航空航天大学学报, 2023, 49(11): 3100-3107.
|
|
DENG B H, XU J F. Active disturbance rejection control of attitude of compound unmanned helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(11): 3100-3107 (in Chinese).
|
32 |
曹宇燕, 金鑫, 彭永涛, 等. 基于最优分配的复合式高速无人直升机纵向控制设计与验证[J]. 航空科学技术, 2023, 34(11): 75-80.
|
|
CAO Y Y, JIN X, PENG Y T, et al. Longitudinal control design and verification of compound high speed unmanned helicopter based on optimal allocation[J]. Aeronautical Science & Technology, 2023, 34(11): 75-80 (in Chinese).
|
33 |
TALBOT P D, TINLING B E, DECKER W A, et al. A mathematical model of a single main rotor helicopter for piloted simulation: NASA-TM-84281[R]. Washington, D.C.: NASA, 1982.
|
34 |
陈仁良, 李攀, 吴伟, 等. 直升机飞行动力学数学建模问题[J]. 航空学报, 2017, 38(7): 520915.
|
|
CHEN R L, LI P, WU W, et al. A review of mathematical modeling of helicopter flight dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 520915 (in Chinese).
|
35 |
CHEN R T N. Effects of primary rotor parameters on flapping dynamics: NASA-TP-1431[R]. Washington, D.C.: NASA, 1980.
|
36 |
PITT D M, PETERS D A. Theoretical prediction of dynamic-inflow derivatives[J]. Vertica, 1981, 5(1): 21-34.
|
37 |
CHEN R T N. A simplified rotor system mathematical model for piloted flight dynamics simulation: NASA-TM-78575[R]. Washington, D.C.: NASA, 1979.
|
38 |
张铮, 陈仁良. 倾转旋翼机旋翼/机翼气动干扰理论与试验[J]. 航空学报, 2017, 38(3): 120196.
|
|
ZHANG Z, CHEN R L. Theory and test of rotor/wing aero-interaction in tilt-rotor aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 120196 (in Chinese).
|
39 |
FERGUSON S W. Development and validation of a simulation for a generic tilt-rotor aircraft: NASA-CR-166537[R]. Washington, D.C.: NASA, 1989.
|
40 |
吴伟. 直升机飞行动力学模型辨识与机动飞行研究[D]. 南京: 南京航空航天大学, 2010.
|
|
WU W. Identification of helicopter flight dynamics model and investigation on maneuver flight[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2010 (in Chinese).
|