1 |
RICCO P, SKOTE M, LESCHZINER M A. A review of turbulent skin-friction drag reduction by near-wall transverse forcing[DB/OL]. arXiv preprint: 2103.04719, 2021
|
2 |
KORNILOV V. Current state and prospects of researches on the control of turbulent boundary layer by air blowing[J]. Progress in Aerospace Sciences, 2015, 76: 1-23.
|
3 |
CORKE THOMAS C, THOMAS FLINT O. Active and passive turbulent boundary-layer drag reduction[J]. AIAA Journal, 2018, 56(10): 3835-3847.
|
4 |
WALSH M J. Riblets as a viscous drag reduction technique[J]. AIAA Journal, 2012, 21(4): 485-486.
|
5 |
LI W P. Turbulence statistics of flow over a drag-reducing and a drag-increasing riblet-mounted surface[J]. Aerospace Science and Technology, 2020, 104: 106003.
|
6 |
WANG L H, HUANG W X, XU C X, et al. Relationship between wall shear stresses and streamwise vortices[J]. Applied Mathematics and Mechanics, 2019, 40(3): 381-396.
|
7 |
FUKAGATA K, KERN S, CHATELAIN P, et al. Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction[J]. Journal of Turbulence, 2008, 9: N35.
|
8 |
YAO J E, CHEN X, HUSSAIN F. Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing[J]. Journal of Fluid Mechanics, 2018, 852: 678-709.
|
9 |
CHENG X Q, WONG C W, HUSSAIN F, et al. Flat plate drag reduction using plasma-generated streamwise vortices[J]. Journal of Fluid Mechanics, 2021, 918: A24.
|
10 |
白建侠, 姜楠, 唐湛棋, 等. 双压电振子异步振动主动调制湍流边界层流向涡减阻[J]. 航空动力学报, 2019, 34(12): 2539-2548.
|
|
BAI J X, JIANG N, TANG Z Q, et al. Active modulation to streamwise vortex drag reduction of turbulent boundary layer by asynchronous vibration with double piezoelectric vibrator[J]. Journal of Aerospace Power, 2019, 34(12): 2539-2548 (in Chinese).
|
11 |
JI S C, ZHANG B, LI J A, et al. Numerical study for active flow control using dielectric barrier discharge actuators[J]. Journal of Aerospace Engineering, 2017, 30(5): 04017050.
|
12 |
KAMETANI Y, FUKAGATA K. Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction[J]. Journal of Fluid Mechanics, 2011, 681: 154-172.
|
13 |
MA R, GAO Z H, LU L S, et al. Skin-friction drag reduction by local porous uniform blowing in spatially developing compressible turbulent boundary layers[J]. Physics of Fluids, 2022, 34: 125130.
|
14 |
LIU Q A, LUO Z B, WANG L, et al. Direct numerical simulations of supersonic turbulent boundary layer with streamwise-striped wall blowing[J]. Aerospace Science and Technology, 2021, 110: 106510.
|
15 |
KAMETANI Y, FUKAGATA K, ÖRLÜ R, et al. Drag reduction in spatially developing turbulent boundary layers by spatially intermittent blowing at constant mass-flux[J]. Journal of Turbulence, 2016, 17(10): 913-929.
|
16 |
Kim K, Sung H J. DNS of turbulent boundary layer with time-periodic blowing through a spanwise slot[C]∥Proceedings of the Asian Computational Fluid Dynamics Conference (5th). Busan, 2003: 835-842.
|
17 |
KIM K, SUNG H J. Effects of periodic blowing from spanwise slot on a turbulent boundary layer[J]. AIAA Journal, 2003, 41(10): 1916-1924.
|
18 |
KIM K, JIN SUNG H. Effects of unsteady blowing through a spanwise slot on a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2006, 557: 423.
|
19 |
CHENG X Q, QIAO Z X, ZHANG X, et al. Skin-friction reduction using periodic blowing through streamwise slits[J]. Journal of Fluid Mechanics, 2021, 920: A50.
|
20 |
ZHANG X, WONG C W, CHENG X Q, et al. Dependence of skin-friction reduction on the geometric parameters of blowing jet array[J]. Physics of Fluids, 2022, 34(10): 105125.
|
21 |
HWANG D, BIESIADNY T. Experimental evaluation of penalty associated with micro-blowing for reducing skin friction[C]∥Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998: AIAA1998-677.
|
22 |
HWANG D. Review of research into the concept of the microblowing technique for turbulent skin friction reduction[J]. Progress in Aerospace Sciences, 2005, 40(8): 559-575.
|
23 |
HWANG D. An experimental study of turbulent skin friction reduction in supersonic flow using a microblowing technique[C]∥Proceedings of the 38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000: AIAA2000-545.
|
24 |
KORNILOV V I, BOIKO A V. Efficiency of air microblowing through microperforated wall for flat plate drag reduction[J]. AIAA Journal, 2012, 50(3): 724-732.
|
25 |
范云涛, 张阳, 叶志贤, 等. 微吹气对湍流平板边界层流动特性的影响及其减阻机理[J]. 航空学报, 2020, 41(10): 123814.
|
|
FAN Y T, ZHANG Y, YE Z X, et al. Micro-blowing: Effect on flow characteristics in turbulent flat plate boundary layer and drag reduction mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123814 (in Chinese).
|
26 |
PIROZZOLI S, GRASSO F, GATSKI T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids, 2004, 16(3): 530-545.
|
27 |
LI X L, FU D X, MA Y W, et al. Acoustic calculation for supersonic turbulent boundary layer flow[J]. Chinese Physics Letters, 2009, 26(9): 094701.
|
28 |
傅德薰, 马延文, 李新亮. 可压缩湍流直接数值模拟[M]. 北京: 科学出版社, 2010.
|
|
FU D X, MA Y W, LI X L. Direct numerical simulation of compressible turbulence[M]. Beijing: Science Press, 2010 (in Chinese).
|
29 |
WHITE F M. Viscous fluid flow[M]. New York: McGraw-Hill, 1974.
|
30 |
WU X H, MOIN P. Transitional and turbulent boundary layer with heat transfer[J]. Physics of Fluids, 2010, 22(8): 085105.
|
31 |
Spalart P R. Direct simulation of a turbulent boundary layer up to Reθ =1410[J]. Journal Fluid Mechanics, 1988, 187: 61.
|
32 |
KAMETANI Y, KOTAKE A, FUKAGATA K, et al. Drag reduction capability of uniform blowing in supersonic wall-bounded turbulent flows[J]. Physical Review Fluids, 2017, 2(12): 123904.
|
33 |
CHOI H, MOIN P, KIM J. Active turbulence control for drag reduction in wall-bounded flows[J]. Journal of Fluid Mechanics, 1994, 262: 75-110.
|
34 |
XU C X, DENG B Q, HUANG W X, et al. Coherent structures in wall turbulence and mechanism for drag reduction control[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(6): 1053-1061.
|
35 |
XU C. Coherent structures and drag-reduction mechanism in wall turbulence[J]. Advances in Mechanics, 2015, 45: 111-140.
|
36 |
JIMÉNEZ J, PINELLI A. The autonomous cycle of near-wall turbulence[J]. Journal of Fluid Mechanics, 1999, 389: 335-359.
|
37 |
LI W P, FAN Y T, MODESTI D, et al. Decomposition of the mean skin-friction drag in compressible turbulent channel flows[J]. Journal of Fluid Mechanics, 2019, 875: 101-123.
|