航空学报 > 2023, Vol. 44 Issue (S2): 729396-729396   doi: 10.7527/S1000-6893.2023.29396

超声速湍流边界层阵列式微吹气流动控制与减阻特性

曾繁宇1, 邱云龙2(), 曹占伟3,4, 张伦1, 陈伟芳1   

  1. 1.浙江大学 航空航天学院,杭州 310027
    2.浣江实验室 先进飞行器研究中心,绍兴 311800
    3.中国运载火箭技术研究院 空间物理重点实验室,北京 100076
    4.西安交通大学 能源与动力工程学院,西安 710049
  • 收稿日期:2023-08-01 修回日期:2023-08-03 接受日期:2023-08-18 出版日期:2023-08-25 发布日期:2023-08-24
  • 通讯作者: 邱云龙 E-mail:qyl1992@zju.edu.cn
  • 基金资助:
    浣江实验室专项项目(HJ-2023-06)

Flow control and drag reduction characteristics of micro-blowing array on supersonic turbulent boundary layer

Fanyu ZENG1, Yunlong QIU2(), Zhanwei CAO3,4, Lun ZHANG1, Weifang CHEN1   

  1. 1.School of Aeronautics and Astronautics,Zhejiang University,Hangzhou 310027,China
    2.Advanced Aircraft Research Center,Huanjiang Laboratory,Shaoxing 311800,China
    3.Science and Technology on Space Physics Laboratory,China Academy of Launch Vehicle Technology,Beijing 100076,China
    4.School of Energy and Power Engineering,Xi’an Jiaotong University,Xi’an 710049,China
  • Received:2023-08-01 Revised:2023-08-03 Accepted:2023-08-18 Online:2023-08-25 Published:2023-08-24
  • Contact: Yunlong QIU E-mail:qyl1992@zju.edu.cn
  • Supported by:
    Specialized Research Projects of Huanjiang Laboratory(HJ-2023-06)

摘要:

采用直接数值模拟(DNS)技术研究了方形微孔阵列微吹气对超声速湍流边界层的流动控制机制与减阻特性。横纵向数量为88×6的0.3 mm×0.3 mm微孔阵列布置在平板完全发展的湍流区域,多孔区域的横纵向中心距均为0.6 mm,孔隙率为25%。微吹气振幅分别为来流速度的0.2%(B1)、0.4%(B2)、0.6%(B3)。计算结果表明,微吹气技术能够降低超声速湍流边界层的表面摩阻,在0.6%的吹气振幅下多孔区域的总阻力减小了23%,且减阻率随微吹气振幅提高近似线性增长。湍动能平衡方程分析结果表明,在施加吹气控制后湍动能平衡方程所有源项均得到了增强。微吹气技术促进了近壁区的能级串联过程,破坏了原有的湍流边界层中速度条带结构和准流向涡间存在的自维持机制。边界层速度脉动的象限分析表明,微吹气技术的减阻效果体现在其对近壁区下扫过程的抑制作用。

关键词: 微吹气, 方形微孔阵列, 湍流边界层, 减阻, 湍流拟序结构

Abstract:

Direct Numerical Simulations (DNS) are used to study the flow control mechanism and drag reduction characteristics of square micropores array micro-blowing on supersonic turbulent boundary layer. The 0.3 mm × 0.3 mm micropores array with a horizontal and longitudinal number of 88×6 is arranged in the spatially developing turbulent region. The horizontal and longitudinal center distance of porous region is 0.6 mm, and the porosity is 25%. The amplitudes of micro-blowing array are 0.2% (B1), 0.4% (B2) and 0.6% (B3) of the freestream velocity, respectively. The calculation results show that the micro-blowing technology can reduce surface friction on supersonic turbulent boundary layer. The total friction of porous region is reduced by 23% at the blowing amplitude of 0.6%, and the drag reduction rate approximately exhibits a linear increase with the increase of micro-blowing amplitude. The results of the turbulent kinetic energy equilibrium analysis show that all source terms of the turbulent kinetic energy equilibrium equation are enhanced after blowing control is applied. The micro-blowing technology promotes the energy cascade process in the near-wall region, and destroys the self-sustaining mechanism between velocity streaks and quasi-streamwise vortices within the original turbulent boundary layer. The quadrant analysis of velocity pulsation on boundary layer shows that the drag reduction of the micro-blowing technique comes from its inhibitory effect on the downward sweeping process in the near-wall region.

Key words: micro-blowing, square micropores array, turbulent boundary layer, drag reduction, turbulent coherent structure

中图分类号: