宋亚辉1(), 樊高宇1, 瞿丽霞2, 张跃林1, 徐悦2, 韩硕2
收稿日期:
2021-08-02
修回日期:
2021-10-14
接受日期:
2022-04-11
出版日期:
2023-01-25
发布日期:
2022-04-24
通讯作者:
宋亚辉
E-mail:songyahuilym@163.com
基金资助:
Yahui SONG1(), Gaoyu FAN1, Lixia QU2, Yuelin ZHANG1, Yue XU2, Shuo HAN2
Received:
2021-08-02
Revised:
2021-10-14
Accepted:
2022-04-11
Online:
2023-01-25
Published:
2022-04-24
Contact:
Yahui SONG
E-mail:songyahuilym@163.com
Supported by:
摘要:
声爆影响航空器飞行的安全性、经济性、环保性等,通过飞行试验进行真实条件下的声爆测量是进行声爆问题研究的重要技术手段。声爆飞行试验是一项复杂的系统工程,面临全传播路径声爆测量技术难点。首先,对近70年的航空器声爆飞行试验研究进行概览,总结了技术发展阶段;其次,对声爆传播特征及对测量的要求进行简要分析,总结了声爆飞行试验测量技术方案;再次,对近场至地面的全传播路径声爆测量关键技术以及辅助参数测量技术进行综述,解析技术要点和发展趋势;最后,对声爆飞行试验测量技术及其发展方向进行了总结,且对中国声爆飞行试验技术研究现状进行简略分析,并提出了建议。
中图分类号:
宋亚辉, 樊高宇, 瞿丽霞, 张跃林, 徐悦, 韩硕. 航空器声爆飞行试验测量技术研究进展[J]. 航空学报, 2023, 44(2): 626186-626186.
Yahui SONG, Gaoyu FAN, Lixia QU, Yuelin ZHANG, Yue XU, Shuo HAN. Progress of aircraft sonic boom flight test measurement technology: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626186-626186.
表 1
具有代表性的声爆飞行试验项目
项目名称 | 时间/年 | 项目来源 | 试验对象 |
---|---|---|---|
F100 Sonic Boom Flight Tests (SBFT)[ | 1956 | 美国NASA、EAFB等 | F100 |
National Sonic Boom Evaluation Program (NSBEP)[ | 1966—1967 | 美国NASA、EAFB等 | XB-70、B58、F-104 |
Public Response to SR-71’s Sonic Boom Tests (PRSSBT)[ | 1967 | 美国NASA、EAFB等 | SR-71 |
French Operation Jericho Carton (FOJC)[ | 1969 | 法国Service Technique Aeronautique (STA) | Mirage Ⅲ、MirageⅣ |
1970 BREN (Bare Reactor Experiments Nevada) tower tests[ | 1970 | 美国NASA、Air Force等 | F104 |
Concorde flight tests[ | 1976—1978 | 瑞典Kiruna Geophysical Institute | “协和号Concorde” |
U.S. Air Force’s Noise and Sonic Boom Impact Technology program (NSBIT)[ | 1987 | 美国Air Force、EAFB等 | F-4、T-38、AT-38、SR-71、F-111、F-14、F-15、F-16、F-18 |
High-Speed Research program (HSR)[ | 1993 | 美国NASA | Tu-144 |
Have BEARs[ | 1994 | 美国Air Force | F-16B |
SR-71 Sonic Boom Propagation Experiment of high-speed research program (SR-71 SBPE)[ | 1995 | 美国NASA | SR-71 |
Quiet Supersonic Platform: Shaped Sonic Boom Demonstration (QSP-SSBD)[ | 2000—2004 | 美国DARPA | F-5E、F-5 SSBD |
Quiet SpikeTM [ | 2006 | 美国Gulfstream、NASA等 | F-15B |
Waveforms and Sonic boom Perception and Response (WSPR)[ | 2010— | 美国NASA、Wyle等 | F/A-18 |
Drop test for Simplified Evaluation of Non-symmetrically Distributed sonic boom (D-SEND)[ | 2011,2015 | 日本JAXA | 第1阶段NWM和LBM,第2阶段为S3CM |
Superboom Caustic Analysis and Measurement Project (SCAMP)[ | 2011 | 美国NASA、Wyle等 | F-18B |
Farfield Investigation of No-boom Thresholds project (FaINT)[ | 2012 | 美国NASA、Wyle、Boeing和法国Dassault等 | F-18B |
Quiet Supersonic Flights 2018 (QSF18)[ | 2018 | 美国NASA | F/A-18 |
OS-X0试验飞行器声爆特性测量试验[ | 2018 | 航空工业空气动力研究院、北京零壹空间科技有限公司 | OS-X0试验飞行器 |
Carpet Determination In Entirety Measurements (CarpetDIEM)[ | 2019— | 美国NASA Armstrong | F/A-18 |
RegUlation and norM for low sonic Boom Levels (RUMBLE)[ | 2020 | 欧盟、俄罗斯等国家和地区的研究机构 | Su-30 |
某型歼击机超低空/高空飞行地面声爆测量试验[ | 2020 | 中国飞行试验研究院、中国航空研究院等 | 某型歼击机J-XX |
Low-Boom Flight Demonstration (LBFD)[ | 2022—2025 (计划) | 美国NASA、Lockheed Martin、FAA、ICAO | 正在研制的X-59 QueSST |
Boom Supersonic Overture (SST)/ XB-1声爆飞行试验[ | 2021—2025 (计划) | 美国Boom Supersonic | 正在研制的Overture SST和其验证机XB-1 |
1 | HENNE P A. Case for small supersonic civil aircraft[J]. Journal of Aircraft, 2005, 42(3): 765-774. |
2 | PLOTKIN K, MAGLIERI D. Sonic boom research: History and future (invited)[C]∥ 33rd AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2003. |
3 | Federal Aviation Administration. Electronic code of federal regulations, Part 91-General operating and flight rules, Subpart I - Operating noise limits [S]. Washington, D. C.: Federal Aviation Administration,1989. |
4 | CHUDOBA B, COLEMAN G, OZA A, et al. What price supersonic speed? A design anatomy of supersonic transportation Part 1[J]. The Aeronautical Journal (1968), 2008, 112: 141-151. |
5 | COWART R, GRINDLE T. An overview of the Gulfstream/NASA Quiet SpikeTM flight test program[C]∥ 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
6 | LOUBEAU A. Recent progress on sonic boom research at NASA [C]∥ International Noise 2012, 2012. |
7 | BENSON L R. Quieting the boom: The shaped sonic boom demonstrator and the quest for quiet supersonic flight[M]. Washington, D.C.: NASA, 2013: 1-216. |
8 | MAGLIERI D, BOBBITT P, PLOTKIN K, et al. Sonic boom: Six decades of research: NASA/SP-2014-622 [R].Washington, D.C.: NASA, 2014. |
9 | 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8): 2507-2528. |
ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2507-2528 (in Chinese). | |
10 | 钱战森, 韩忠华. 声爆研究的现状与挑战[J]. 空气动力学学报, 2019, 37(4): 601-619, 600. |
QIAN Z S, HAN Z H. Progress and challenges of sonic boom research[J]. Acta Aerodynamica Sinica, 2019, 37(4): 601-619, 600 (in Chinese). | |
11 | Air Force U.S.. The sonic boom problem [R]. Washington, D.C.: Office, Director of Development Planning DCS/Research and Development HQ USAF, 1963. |
12 | 朱自强, 吴宗成, 陈迎春. 民机空气动力设计先进技术[M]. 上海: 上海交通大学出版社, 2013: 49-54. |
ZHU Z Q, WU Z C, CHEN Y C. Advanced technology of aerodynamic design for commercial aircraft[M]. Shanghai: Shanghai Jiao Tong University Press, 2013: 49-54 (in Chinese). | |
13 | GIPSON L. Low boom flight demonstrator (LBFD) [EB/OL]. (2018-9-5) [2021-7-20]. . |
14 | KAMLET M. NASA marks continued progress on X-59 [EB/OL]. (2020-9-7) [2021-7-20]. . |
15 | DOEBLER W J, RATHSAM J. How loud is X-59’s shaped sonic boom? [C]∥ Proceedings of Meetings on Acoustics, 5th International Conference on the Effects of Noise on Aquatic Life, 2019. |
16 | MASAHISA H, KENJI Y. D-send project for low sonic boom design technology [C]∥ 28th International Congress of the Aeronautical Sciences, 2012. |
17 | 徐悦, 韩忠华, 尤延铖, 等. 新一代绿色超声速民机的发展现状与挑战[J]. 科学通报, 2020, 65(S1): 127-133. |
XU Y, HAN Z H, YOU Y C, et al. Progress and challenges of next generation green supersonic civil aircraft[J]. Chinese Science Bulletin, 2020, 65(S1): 127-133 (in Chinese). | |
18 | SAITO Y, UKAI T, MIYAKOSHI K, et al. Sonic boom estimation using the multipole method for free-flight experiments[C]∥ 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014. |
19 | FOMIN V M, KISELEVA T A, VOLKOV V F, et al. Sonic boom problem: Past, present and future [C]∥ Proceeding of the 1st International Conference on High-Speed Vehicle Science and Technology (HISST), 2018. |
20 | DE FLORIO F. Airworthiness: An introduction to aircraft certification and operations[M]. 3rd ed. Saint Louis: Elsevier Science, 2016. |
21 | HONDA M. D-SEND#2 successful flight [J]. JAXA Aeronautics Magazine Flight Path, 2015(9&10): 5-7. |
22 | GROSSARTH S, SCHRECKENBERG D, OOSTEN N V, et al. Psychological assessment of noise annoyance due to low sonic boom[C]∥ Forum Acusticum 2020, 2020. |
23 | EMMANUELLI A, LECHAT T, DRAGNA D, et al. Ground effects on sonic boom reflection[J]. The Journal of the Acoustical Society of America, 2019, 146(4): 2781. |
24 | LØVHOLT F, NOREN-COSGRIFF K, PARK J, et al. Building vibration due to sonic boom—Results from simulations and field measurements[J]. The Journal of the Acoustical Society of America, 2021, 149(4): A100. |
25 | Federal Aviation Administration. Fact sheet-supersonic flight [EB/OL]. (2020-11-25) [2021-7-20]. . |
26 | WAGGONER E, CLIATT L J, HILL M A, et al. An overview of lessons learned from sonic boom flight research projects conducted by NASA Armstrong flight research center[C]∥ 2018 Flight Testing Conference. Reston: AIAA, 2018. |
27 | HAERING E, CLIATT L, BUNCE T, et al. Initial results from the variable intensity sonic boom propagation database[C]∥ 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference). Reston: AIAA, 2008. |
28 | DOWNING J. Lateral spread of sonic boom measurements from US Air Force boomfile flight tests: US Air Force AL-TR-1992-0095 [R]. Washington, D.C.: United States Air Force, 1992. |
29 | 徐悦. 绿色超声速民机的低声爆设计与评估[J]. 国际航空, 2021(4): 30-32. |
XU Y. CAE developing low-boom supersonic civil aircraft concept[J]. International Aviation, 2021(4): 30-32 (in Chinese). | |
30 | PARK M A, NEMEC M. Nearfield summary and statistical analysis of the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2018, 56(3): 851-875. |
31 | RALLABHANDI S K, LOUBEAU A. Summary of propagation cases of the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2018, 56(3): 876-895. |
32 | MULLENS M E. A flight test investigation of the sonic boom: U.S. Air Force AFFTC TN 56-20 [R]. Washington, D.C.: United States Air Force, 1956. |
33 | ClOW L W. 6th weather wing pamphlet-weather-sonic boom: No.105-1-1 [R]. Washington, D.C.: 6th Weather Wing Air Weather Service, United States Air Force, 1966. |
34 | HILTON D, MAGLIERI D. Experiments on the effects of atmospheric refraction and airplane accelerations on sonic-boom ground-pressure patterns: NASA TN-D 3520 [R]. Washington, D.C.: NASA, 1966. |
35 | 周自全. 飞行试验工程[M]. 北京: 航空工业出版社, 2010: 1-20. |
ZHOU Z Q. Flight test engineering[M]. Beijing: Aviation Industry Press, 2010: 1-20 (in Chinese). | |
36 | KRYTER K, JOHNSON P J, YOUNG J R. Psychological experiments on sonic booms conducted at Edwards air force base: AD689844 [R]. California: Stanford Research Institute, 1968. |
37 | HUBBARD H H, MAYES WILLIAM H. Sonic boom effects on people and structures: NASA SP-147 [R]. Washington, D.C.: NASA, 1967. |
38 | MAGLIERI D J, HUCKEL V, HENDERSON R. Sonic boom measurements for SR-71 aircraft operating at Mach numbers to 3.0 and altitudes to 24384 meters: NASA TN D-6823 [R]. Washington, D.C.: NASA, 1972. |
39 | STEPHEN R N, EDWARD A, HAERING JR E A, et al. Ground-based sensors for the SR-71 sonic boom propagation experiment: NASA-TM-104310 [R]. Washington, D.C.: NASA, 1995. |
40 | HILTON D, HUBBARD H H, HUCKEL V, et al. Ground measurements of sonic-boom pressures for the altitude range of 10, 000 to 75, 000 feet: NASA TR R-198 [R]. Washington, D.C.: NASA, 1964. |
41 | WANNER J L, VALLEE J, VIVIER C, et al. Theoretical and experimental studies of the focus of sonic booms[J]. The Journal of the Acoustical Society of America, 1972, 52(1A): 13-32. |
42 | HUBBARD H H, MAGLIERI D, HUCKEL V. Variability of sonic boom signatures with emphasis on the extremities of the ground exposure patterns: NASA SP-255 [R]. Washington, D.C.: NASA, 1971. |
43 | HAGLUND G, KANE E. Flight test measurements and analysis of sonic boom phenomena near the shock wave extremity: NASA CR-2167 [R]. Washington, D.C.: NASA, 1973. |
44 | LISZKA L. Long‐distance focusing of Concorde sonic boom[J]. The Journal of the Acoustical Society of America, 1978, 64(2): 631-635. |
45 | HABER J, NAKAKI D. Noise and sonic boom impact technology. Sonic boom damage to conventional structures: U.S. Air Force HSD-TR-89-001 [R]. Washington, D.C.: United States Air Force, 1989. |
46 | MACK R J. A Whitham theory sonic-boom analysis of the TU-144 aircraft at a Mach number of 2.2 [C]∥ 1995 NASA High-Speed Research Program Sonic Boom Workshop: Volume Ⅱ-Configuration a Design, Analysis, and Testing. Washington, D.C.: NASA, 1995: 1-17. |
47 | DOWNING M, ZAMOT N. USAF flight test investigation of focused sonic booms[J]. The Journal of the Acoustical Society of America, 1995, 97(5): 3257. |
48 | HAERING E, EHERNBERGER L, WHITMORE S. Preliminary airborne measurements for the SR-71 sonic boom propagation experiment: NASA TM 104307 [R]. Washington, D.C.: NASA, 1995. |
49 | PAWLOWSKI J, GRAHAM D, BOCCADORO C, et al. Origins and overview of the shaped sonic boom demonstration program[C]∥ 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
50 | HAERING JR. E A, MURRAY J E, PURIFOY D D,et al. Airborne measurements of shaped sonic boom demonstration aircraft pressure signatures and comparisons to CFD: AIAA-2005-0009 [R]. Reston: AIAA, 2005. |
51 | PLOTKIN K J, HAERING JR E A, MURRAY J E, et al. Ground data collection of shaped sonic boom experiment aircraft pressure signatures[C]∥ 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
52 | HOWE D, WAITHE K, EDWARD HAERING J JR. Quiet spike near field flight test pressure measurements with CFD comparisons[C]∥ 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
53 | CLIATT L J, HAERING E A, JONES T P, et al. A flight research overview of WSPR, a pilot project for sonic boom community response[C]∥ 32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014. |
54 | PAGE J, PLOTKIN K, HAERING E, et al. SCAMP: Superboom caustic Analysis and measurement project overview[C]∥ 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013. |
55 | PAGE J, HOBBS C, HAERING E, et al. SCAMP: Focused sonic boom experimental execution and measurement data acquisition[C]∥ 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013. |
56 | CLIATT L J, HILL M A, HAERING E A, et al. A summary of the lateral cutoff analysis and results from NASA’s farfield investigation of no-boom thresholds[C]∥ AIP Conference Proceedings, 2015, 1685(1): 090007. |
57 | KAMLET M. NASA flights off GALVESTONWILL test ways to measure response to low booms [J]. Airport Noise Report, 2018, 30(36): 143-146. |
58 | 钱战森, 刘中臣, 冷岩, 等. OS-X0试验飞行器声爆特性飞行测量与数值模拟分析[J]. 空气动力学学报, 2019, 37(4): 675-682. |
QIAN Z S, LIU Z C, LENG Y, et al. Flight measurement and numerical simulation of sonic boom signature of OS-X0 experimental aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(4): 675-682 (in Chinese). | |
59 | BELL D O. NASA deploys 30-Mile array ahead of quiet supersonic X-Plane tests [J]. Noise Regulation Report: The Nation's Only Independent Noise Control Publication, 2019,46(9): 73-74. |
60 | BTOADBENT M. Overture [J]. Air International, 2019, 96(5): 98. |
61 | O'Hare MAUREEN. Boom supersonic aims to fly anywhere in the world in four hours for $ 100’ [N]. CNN Travel, 2021-5-18. |
62 | KAMLET M. NASA’s improved supersonic cockpit display shows precise locations of sonic booms [EB/OL]. (2016-12-18) [2021-7-20]. . |
63 | BUONANNO M, CHAI S, MARCONI F, et al. Overview of sonic boom reduction efforts on the lockheed martin N+2 supersonic validations program[C]∥ 32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014. |
64 | MEREDITH K, DAHLIN J, GRAHAM D, et al. Computational fluid dynamics comparison and flight test measurement of F-5E off-body pressures[C]∥ 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
65 | LIEBHARDT B, LÜTJENS K, UENO A, et al. JAXA’s S4 supersonic low-boom airliner-A collaborative study on aircraft design, sonic boom simulation, and market prospects[C]∥ AIAA Aviation 2020 Forum. Reston: AIAA, 2020. |
66 | WELGE H, NELSON C, BONET J. Supersonic vehicle systems for the 2020 to 2035 timeframe[C]∥ 28th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2010. |
67 | SARROW V W, STOUT T A, BRADLEY K A, et al. SonicBAT: Some highlights and subsequent developments [C] ∥ 23rd International Congress on Acoustics (ICA 2019), 2019. |
68 | KAMLET M. NASA test flights examine effect of atmospheric turbulence on sonic booms [EB/OL]. (2018-7-27)[2021-7-20]. . |
69 | HEINECK J T, BANKS D W, SMITH N T, et al. Background-oriented schlieren imaging of supersonic aircraft in flight[J]. AIAA Journal, 2020, 59(1): 11-21. |
70 | CREECH G. NASA Dryden flies new supersonic shockwave probes [EB/OL]. (2017-8-7) [2021-7-20]. . |
71 | Federal Aviation Administration. Special flight authorizations for supersonic aircraft FAA-2019-0415 (Amdt 91-362) [S]. Washington, D.C.: Federal Aviation Administration, 2021. |
72 | Federal Aviation Administration. Noise certification of supersonic airplanes FAA-2020-0316 (Notice No. 20-06) [S]. Washington, D.C.: Federal Aviation Administration, 2020. |
73 | PAGE J A, LOUBEAU A. Overall vehicle system noise: Sonic boom[J]. CEAS Aeronautical Journal, 2019, 10(1): 335-353. |
74 | LEATHERWOOD J D, SULLIVAN B M, SHEPHERD K P, et al. Summary of recent NASA studies of human response to sonic booms[J]. The Journal of the Acoustical Society of America, 2002, 111(1 Pt 2): 586-598. |
75 | MARSHALL A J. Development of a model of startle resulting from exposure to sonic booms [D]. West Lafayette: Purdue University, 2012. |
76 | BOLANDER C R, HUNSAKER D F, SHEN H, et al. Procedure for the calculation of the perceived loudness of sonic booms[C]∥ AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
77 | WALKDEN F. The shock pattern of a wing-body combination, far from the flight path[J]. Aeronautical Quarterly, 1958, 9(2): 164-194. |
78 | LANSING D L. Some effect of flight maneuvers on the distribution of sonic booms [J]. Proceedings of Symposium on Atmospheric Acoustic Propagation, 1961, 1: 24-43. |
79 | DOWNING M, ZAMOT N, MOSS C, et al. Controlled focused sonic booms from maneuvering aircraft[J]. The Journal of the Acoustical Society of America, 1998, 104(1): 112-121. |
80 | HENDERSON H R, HILTON D, HUCKEL V, et al. Measurements of sonic boom signatures from flights at cutoff Mach number: NASA SP-255 [R]. Washington, D.C.: NASA, 1971. |
81 | COULOUVRAT F, BLUMRICH R, HEIMANN D. Meteorologically induced variability of sonic boom of a supersonic aircraft in cruising or acceleration phase[C] ∥ International Symposium on Nonlinear Acoustics-Sonic-Boom Forum, 2006. |
82 | BAIZE D G, MCELROY M O, FENBERT J A, et al. A performance assessment of eight low-boom high-speed civil transport concepts: NASA CP-1999-209699 [R]. Washington, D.C.: NASA, 1999. |
83 | KANE E, PALMER T Y. Meteorological aspects of the sonic boom: FAA SRDS RD 64-160 [R]. Washington, D.C.: FAA, 1964. |
84 | RICKLEY E J, PIERCE A D. Detection and assessment of secondary sonic booms in New England[J]. The Journal of the Acoustical Society of America, 1981, 69(S1): S100. |
85 | HUTCHINSON A D, BOWERSOX R D. A sonic boom propagation code for studying atmospheric effects and uncertainties[C]∥ AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
86 | YAMASHITA R, SUZUKI K. Full-field sonic boom simulation in stratified atmosphere[J]. AIAA Journal, 2016, 54(10): 3223-3231. |
87 | RENDÓN P L, COULOUVRAT F. Reflection of caustics and focused sonic booms[J]. Wave Motion, 2005, 42(3): 211-225. |
88 | WEINSTEIN L M, STACY K, VIEIRA G J, et al. Imaging supersonic aircraft shock waves[J]. Journal of Flow Visualization and Image Processing, 1997, 4(3): 189-199. |
89 | KAMLET M. NASA flights advance celestial schlieren imagery for supersonic aircraft [EB/OL]. (2017-12-15) [2021-7-20]. . |
90 | NORRI G. Seen as well as heard [J]. Aviation Week & Space Technology, 2015, 177(18): 64. |
91 | GIPSON L, DUNBAR B. Low-boom flight demonstration: The mission [EB/OL]. (2020-9-18) [2021-7-20]. . |
92 | MAGLIERI D J, HUBBARD H H. Ground measurements of the shock-wave noise from supersonic bomber airplanes in the altitude range from 30 000 to 50 000 Feet: NASA TN D-880 [R]. Washington, D.C.: NASA, 1961. |
93 | LEE R A, DOWNING J M. Boom event analyzer recorder-Unmanned sonic boom monitor[J]. Journal of Aircraft, 1996, 33(1): 171-175. |
94 | KAMLET M. Cutting edge ground recorders selected to measure future X-59 quiet supersonic flights [EB/OL]. (2021-3-22) [2021-7-20] . |
95 | HENDERSON H R, HUCKEL V, MAGLIERI D, et al. Variability in sonic-boom signatures measured along an 8000-foot linear array: NASA TN-5040 [R]. Washington, D.C.: NASA, 1969. |
96 | MAGLIERI D, HILTON D, MCLEOD N. Summary of sonic boom signatures resulting from atmospheric effects [C]∥ 5th Meeting of the (FAUSST) French Anglo-Saxon United States Supersonic Transport Committee, 1967. |
97 | HILTON D A, NEWMAN J W JR. Instrumentation techniques for measurement of sonic-boom signatures[J]. The Journal of the Acoustical Society of America, 1966, 39(5B): S31-S35. |
98 | PLOTKIN K, PAGE J, GRAHAM D, et al. Ground measurements of a shaped sonic boom[C]∥ 10th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2004. |
99 | SCHULTZ T, UNDERBRINK J R, HUNTING C, et al. Finding the boom: Phased array processing applied to sonic boom direction of arrival estimation[C]∥ 22nd AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2016. |
100 | MAGLIERI D J, RITCHIE V S, BRYANT J F JR. In-flight shock wave pressure measurements above and below a bomber airplane at Mach numbers from 1.42 to 1.69: NASA TN-D1968 [R]. Washington, D.C.: NASA, 1963. |
101 | MAGLIERI D J, HENDERSON H R, TINETTI A F. Measured sonic boom signatures above and below the XB-70 airplane flying at Mach 1.5 and 37 000 feet: NASA/CR-2011-217077 [R]. Washington, D.C.: NASA, 2011. |
102 | KAMLET M. NASA tests supersonic shock probe using historical NACA flight test technique [EB/OL]. (2019-12-6) [2021-7-20]. . |
103 | BANKS D, VANDAM C P, SHIU H, et al. Visualization of In-flight flow phenomena using infrared thermography[C]∥ 9th International Symposium on Flow Visualization, 2000. |
104 | MAGLIERI D. Sonic boom flight research-Some effects of airplane operations and the atmosphere on sonic boom signatures: NASA SP-147 [R]. Washington, D.C.: NASA, 1965. |
105 | MERINO-MARTÍNEZ R, SIJTSMA P, SNELLEN M, et al. A review of acoustic imaging methods using phased microphone arrays[J]. CEAS Aeronautical Journal, 2019, 10(1): 197-230. |
106 | YANG J L, HE L B, ZHU H J, et al. Progress of calibration on methods for high sound pressure microphone [C]∥ 26th International Congress on Sound and Vibration 2019: ICSV26, 2019. |
107 | TIAN B, LI K, LIU J, et al. Eccentric reflective optical fiber MEMS micro-pressure sensor [J]. Journal of Micromechanics and Microengineering, 2020, 30(8): 085010. |
108 | HESSLER E, HESSLER D M, BRANDSTATT P, et al. Experimental study to determine wind-induced noise and windscreen attenuation effects on microphone response for environmental wind turbine and other applications [J]. Noise Control Engineering Journal, 2008, 56(4): 300-309. |
109 | FIELDS R S JR, TSO J, SODERMAN P T. An experimental investigation of cavity flow oscillations and tones of an In-flow microphone[J]. International Journal of Aeroacoustics, 2006, 5(2): 173-191. |
110 | CONNER M. NASA Armstrong fact sheet: Fiber optic sensing system [EB/OL]. (2018-1-17) [2021-7-20]. . |
[1] | 聂博文, 王亮权, 黄志银, 何龙, 杨仕鹏, 颜鸿涛, 章贵川. 复合式高速无人直升机飞行动力学建模与控制策略设计[J]. 航空学报, 2024, 45(9): 529848-529848. |
[2] | 谢玮, 罗振兵, 周岩, 刘强, 吴建军, 董昊. 高超声速双楔激波干扰定常射流控制试验研究[J]. 航空学报, 2024, 45(7): 128813-128813. |
[3] | 李军府, 陈晴, 王伟, 韩忠华, 谭玉婷, 丁玉临, 谢露, 乔建领, 宋科, 艾俊强. 一种先进超声速民机低声爆高效气动布局设计[J]. 航空学报, 2024, 45(6): 629613-629613. |
[4] | 童晟翔, 史志伟, 耿玺, 王力爽, 孙志坤, 陈其昌. 组合式仿枫树子飞行器与空中分体技术[J]. 航空学报, 2024, 45(6): 629590-629590. |
[5] | 汪洪波, 曾宇, 熊大鹏, 杨揖心, 孙明波. SST湍流模型的激波与可压缩效应改进[J]. 航空学报, 2024, 45(3): 128694-128694. |
[6] | 赖江, 范召林, 王乾, 董思卫, 童福林, 袁先旭. 高超声速有攻角锥裙直接数值模拟[J]. 航空学报, 2024, 45(2): 128610-128610. |
[7] | 李文龙, 吴波, 谢帅. 有起落架布置的翼身整体结构机翼载荷测量技术[J]. 航空学报, 2024, 45(1): 229525-229525. |
[8] | 马平, 张宁, 石安华, 于哲峰, 梁世昌, 黄洁. 典型微波波段信号在模拟等离子体中的传输特性[J]. 航空学报, 2023, 44(S2): 729476-729476. |
[9] | 曾宇, 汪洪波, 孙明波, 王超, 刘旭. SST湍流模型改进研究综述[J]. 航空学报, 2023, 44(9): 27411-027411. |
[10] | 马印锴, 李祝飞, 黄琪, 杨基明. 宽速域翼尖涡及其与斜激波相互作用[J]. 航空学报, 2023, 44(7): 38-50. |
[11] | 金毅, 孙姝, 郭赟杰, 谭慧俊, 张悦. 超声速可调进气道内流双解现象及其节流特性[J]. 航空学报, 2023, 44(7): 127134-127134. |
[12] | 刘为佳, 李映坤, 陈雄, 李春雷. 基于流固耦合的激波/边界层干扰作用下壁板颤振特性[J]. 航空学报, 2023, 44(6): 127085-127085. |
[13] | 魏皇生, 黄柱, 席光. 一种基于幅值和波数的耗散控制方法[J]. 航空学报, 2023, 44(4): 126589-126589. |
[14] | 王文杰, 赵旭, 杨龙, 李濠君, 向粤. 跨速域强地效水平助推滑跑气动机理[J]. 航空学报, 2023, 44(21): 528247-528247. |
[15] | 宋家辉, 许爱国, 苗龙, 廖煜淦, 梁福文, 田丰, 聂明卿, 王宁飞. 激波/平板层流边界层干扰熵增特性[J]. 航空学报, 2023, 44(21): 528520-528520. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学