1 |
SUN Y, LI D C, JIANG J Q, et al. Design and experimental study of a new flapping wing rotor micro aerial vehicle[C]∥ 2017 IEEE International Conference on Unmanned Systems (ICUS). Piscataway: IEEE Press, 2018: 29-33.
|
2 |
MIRZAEINIA A, HASSANALIAN M, LEE K, et al. Energy conservation of V-shaped swarming fixed-wing drones through position reconfiguration[J]. Aerospace Science and Technology, 2019, 94: 105398.
|
3 |
陈树生, 张兆康, 李金平, 等. 一种宽速域乘波三角翼气动布局设计[J]. 航空学报, 2023, 44(24): 128441.
|
|
CHEN S S, ZHANG Z K, LI J P, et al. A wide-speed aerodynamic layout adopting waverider-delta wing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 128441 (in Chinese).
|
4 |
高红岗, 高正红, 邓阳平, 等. 鸭式旋翼/机翼飞机悬停状态飞行动力学特性[J]. 航空学报, 2017, 38(11): 121139.
|
|
GAO H G, GAO Z H, DENG Y P, et al. Flight dynamic characteristics of canard rotor/wing aircraft in hover[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 121139 (in Chinese).
|
5 |
BAI S N, HE Q N, CHIRARATTANANON P. A bioinspired revolving-wing drone with passive attitude stability and efficient hovering flight[J]. Science Robotics, 2022, 7(66): eabg5913.
|
6 |
YOUNGREN H, JAMESON S, SATTERFIELD B. Design of the samarai monowing rotorcraft nano air vehicle[C]∥ Proceedings of the American Helicopter Society 65th Annual Forum. Fairfax: AHS, 2009.
|
7 |
FRIES F, WIN S K H, TANG E, et al. Design and implementation of a compact rotational speed and air flow sensor for unmanned aerial vehicles[J]. IEEE Sensors Journal, 2019, 19(22): 10298-10307.
|
8 |
杨延平, 张子健, 应培, 等. 集群组合式柔性无人机:创新、机遇及技术挑战[J]. 飞行力学, 2021, 39(2): 1-9, 15.
|
|
YANG Y P, ZHANG Z J, YING P, et al. Flexible modular swarming UAV: innovative, opportunities, and technical challenges[J]. Flight Dynamics, 2021, 39(2): 1-9, 15 (in Chinese).
|
9 |
周国仪, 胡继忠, 曹义华, 等. 共轴式直升机飞行动力学仿真数学模型研究[J]. 航空学报, 2003, 24(4): 293-295.
|
|
ZHOU G Y, HU J Z, CAO Y H, et al. Research on a mathematical model for coaxial helicopter flight dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(4): 293-295 (in Chinese).
|
10 |
NORBERG R. Autorotation, self‐stability, and structure of single‐winged fruits and seeds (samaras) with comparative remarks on animal flight[J]. Biological Reviews, 1973, 48: 561-596.
|
11 |
HO D, WONG D K C. Investivation of low thrust to weight ratio rotational capacity of asymmetric mono-wing configurations[C]∥ 28th International Congress of the Aeronautic Sciences. Brisbane, 2006.
|
12 |
OBRADOVIC B, HO G, BARTO R, et al. A multi-scale simulation methodology for the samarai monocopter μUAV[C]∥ Proceedings of the AIAA Modeling and Simulation Technologies Conference. Reston: AIAA, 2012: AIAA2012-5012.
|
13 |
DORMIYANI M E, BANAZADEH A, SAGHAFI F. Multibody modeling and simulation of monocopter micro air vehicle[J]. Applied Mechanics and Materials, 2015, 772: 401-409.
|
14 |
MATIČ G, TOPIČ M, JANKOVEC M. Mathematical model of a monocopter based on unsteady blade-element momentum theory[J]. Journal of Aircraft, 2015, 52(6): 1905-1913.
|
15 |
KELLAS A. The guided samara: Design and development of a controllable single-bladed autorotating vehicle[D]. Cambridge: Massachusetts Institute of Technology, 2007.
|
16 |
JAMESON S, FREGENE K, CHANG M, et al. Lockheed Martin’s SAMARAI nano air vehicle: challenges, research, and realization[C]∥ Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012: AIAA2012-584.
|
17 |
ULRICH E R, HUMBERT J S, PINES D J. Pitch and heave control of robotic samara micro air vehicles[J]. Journal of Aircraft, 2010, 47(4): 1290-1299.
|
18 |
HOUGHTON J, HOBURG W. Fly-by-wire control of a monocopter[R]. Cambridge: Massachusetts Institute of Technology, 2008.
|
19 |
李家乐, 王正平. 基于Lagrange方法的单旋翼飞行器动力学建模[J]. 飞行力学, 2016, 34(4): 15-18.
|
|
LI J L, WANG Z P. Dynamics modeling for monowing rotorcraft using Lagrange method[J]. Flight Dynamics, 2016, 34(4): 15-18 (in Chinese).
|
20 |
WIN S K H, WIN L S T, SUFIYAN D, et al. Design and control of the first foldable single-actuator rotary wing micro aerial vehicle[J]. Bioinspiration & Biomimetics, 2021, 16(6): 066019.
|
21 |
周伟, 马培洋, 郭正, 等. 基于翼尖链翼的组合固定翼无人机研究[J]. 航空学报, 2022, 43(9): 325946.
|
|
ZHOU W, MA P Y, GUO Z, et al. Research of combined fixed-wing UAV based on wingtip chained[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 325946 (in Chinese).
|
22 |
安朝, 谢长川, 孟杨, 等. 多体组合式无人机飞行力学稳定性分析及增稳控制研究[J]. 工程力学, 2021, 38(11): 248-256.
|
|
AN C, XIE C C, MENG Y, et al. Flight dynamics and stable control analyses of multi-body aircraft[J]. Engineering Mechanics, 2021, 38(11): 248-256 (in Chinese).
|
23 |
杜万闪, 周洲, 拜昱, 等. 组合式飞行器多体动力学建模与飞行力学特性[J]. 兵工学报, 2023, 44(8): 2245-2262.
|
|
DU W S, ZHOU Z, BAI Y, et al. Study on multibody dynamics modeling and flight dynamic characteristics of combined aircraft[J]. Acta Armamentarii, 2023, 44(8): 2245-2262 (in Chinese).
|
24 |
HAN T, RANASINGHE N, BARRIOS L, et al. An online gait adaptation with SuperBot in sloped terrains[C]∥ 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway: IEEE Press, 2013: 1256-1261.
|
25 |
OUNG R, D’ANDREA R. The Distributed Flight Array: design, implementation, and analysis of a modular vertical take-off and landing vehicle[J]. The International Journal of Robotics Research, 2014, 33(3): 375-400.
|
26 |
李海. 涵道共轴双旋翼无人机总体设计及气动特性研究[D]. 长春: 中国科学院大学, 中国科学院长春光学精密机械与物理研究所, 2021.
|
|
LI H. Overall design and aerodynamic characteristics of ducted coaxial twin-rotor UAV[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021 (in Chinese).
|
27 |
HLA WIN S K, GOH T H, LOW J E, et al. Direction controlled descent of samara autorotating wings (SAW) with N-wings[C]∥ 2018 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2018: 6553-6559.
|
28 |
WIN S K H, WIN L S T, SOH G S, et al. Design, modelling and control of collaborative samara autorotating wings (SAW)[J]. International Journal of Intelligent Robotics and Applications, 2019, 3(2): 144-157.
|
29 |
WIN S K H, WIN L S T, SUFIYAN D, et al. Dynamics and control of a collaborative and separating descent of samara autorotating wings[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 3067-3074.
|
30 |
DETERS R W, ANANDA KRISHNAN G K, SELIG M S. Reynolds number effects on the performance of small-scale propellers[C]∥Proceedings of the 32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014: AIAA2014-2151.
|
31 |
TONG S X, SHI Z W, YUN T, et al. Longitudinal flight dynamics modeling and a flight stability analysis of a monocopter[J]. AIP Advances, 2022, 12(11): 115322.
|