1 |
SUN H B, WANG J, CHEN K. A tip clearance prediction model for multistage rotors and stators in aero-engines [J]. Chinese Journal of Aeronautics, 2021, 34(2): 343-357.
|
2 |
王辰, 左彦飞, 江志农, 等. 全转速系数矩阵降维重构的燃机不平衡量逆推方法[J]. 航空学报, 2020, 41(11): 223670.
|
|
WANG C, ZUO Y F, JIANG Z N, et al. A backstepping method of gas turbine unbalance vector based on dimension reduction and reconstruction of full speed coefficient matrix[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 223670 (in Chinese).
|
3 |
孙灿飞, 王友仁. 直升机行星传动轮系故障诊断研究进展[J]. 航空学报, 2017, 38(7): 111-124.
|
|
SUN C F, WANG Y R. Advance in study of fault diagnosis of helicopter planetary gears[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 111-124 (in Chinese).
|
4 |
MA S J, CHENG B, SHANG Z W. Scattering transform and LSPTSVM based fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2018, 104: 155-170.
|
5 |
ZHANG Y H, ZHOU T T, HUANG X F, et al. Fault diagnosis of rotating machinery based on recurrent neural networks[J]. Measurement, 2020, 171: 108774.
|
6 |
王庆锋, 刘家赫, 卫炳坤, 等. 数据驱动的聚类分析故障识别方法研究[J]. 机械工程学报, 2020, 56(18):7-14.
|
|
WANG Q F, LIU J H, WEI B K, et al. Research on data-driven clustering analysis fault identification method[J]. Journal of Mechanical Engineering, 2020, 56(18): 7-14 (in Chinese).
|
7 |
沈长青, 汤盛浩, 江星星, 等. 独立自适应学习率优化深度信念网络在轴承故障诊断中的应用研究[J]. 机械工程学报, 2019, 55(7): 81-88.
|
|
SHEN C Q, TANG S H, JIANG X X, et al. Bearings fault diagnosis based on improved deep belief network by self-individual adaptive learning rate[J]. Journal of Mechanical Engineering, 2019, 55(7): 81-88 (in Chinese).
|
8 |
沈飞, 陈超, 徐佳文, 等. 基于时间迁移模型的旋转机械实时故障诊断[J]. 仪器仪表学报, 2019, 40(10): 84-94.
|
|
SHEN F, CHEN C, XU J W, et al. Time transfer model based rotating machine real-time fault diagnosis[J]. Chinese Journal of Scientific Instrument, 2019, 40(10): 84-94 (in Chinese).
|
9 |
LEI Y G, YANG B, JIANG X W, et al. Applications of machine learning to machine fault diagnosis: a review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138: 106587.
|
10 |
LI C, ZHANG S H, QIN Y, et al. A systematic review of deep transfer learning for machinery fault diagnosis[J]. Neurocomputing, 2020, 407: 121-135.
|
11 |
徐颖强, 陈仙亮, 曹栋波. 样本量为2的极小样本相容性检验方法[J]. 航空学报, 2018, 39(5): 144-151.
|
|
XU Y Q, CHEN X L, CAO D B. Compatibility test method in minimal samples situation with two samples[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 144-151 (in Chinese).
|
12 |
CHEN C, LI Z H, YANG J, et al. A cross domain feature extraction method based on transfer component analysis for rolling bearing fault diagnosis[C]∥2017 29th Chinese Control and Decision Conference (CCDC), 2017.
|
13 |
雷亚国, 杨彬, 杜兆钧, 等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019, 55(7): 1-8.
|
|
LEI Y G, YANG B, DU Z J, et al. Deep transfer diagnosis method for machinery in big data era[J]. Journal of Mechanical Engineering, 2019, 55(7): 1-8 (in Chinese).
|
14 |
康守强, 邹佳悦, 王玉静, 等. 基于无监督特征对齐的变负载下滚动轴承故障诊断方法[J]. 中国电机工程学报, 2020, 40(1): 274-281.
|
|
KANG S Q, ZOU J Y, WANG Y J, et al. Fault diagnosis method of a rolling bearing under varying loads based on unsupervised feature alignment[J]. Proceedings of the CSEE, 2020, 40(1): 274-281 (in Chinese).
|
15 |
LIAO Y X, HUANG R Y, LI J P, et al. Deep semisupervised domain generalization network for rotary machinery fault diagnosis under variable speed[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(10): 8064-8075.
|
16 |
SHEN F, CHEN C, YAN R Q, et al. Bearing fault diagnosis based on SVD feature extraction and transfer learning classification[C]∥2015 Prognostics and System Health Management Conference, 2015.
|
17 |
邵海东, 张笑阳, 程军圣, 等. 基于提升深度迁移自动编码器的轴承智能故障诊断[J]. 机械工程学报, 2020, 56(9): 84-90.
|
|
SHAO H D, ZHANG X Y, CHENG J S, et al. Intelligent fault diagnosis of bearing using enhanced deep transfer auto-encoder[J]. Journal of Mechanical Engineering, 2020, 56(9): 84-90 (in Chinese).
|
18 |
罗嘉宁. 实验与仿真数据驱动的滚动轴承故障严重性评估研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
LUO J N. Research on experimental and simulation data-driven fault severity assessment of rolling element bearings[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese).
|
19 |
董韵佳. 基于动力学仿真和迁移学习的滚动轴承故障诊断方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
DONG Y J. Investigation of dynamic simulation and transfer learning based fault diagnosis method for rolling element bearings[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese).
|
20 |
马波, 蔡伟东, 赵大力. 基于GAN样本生成技术的智能诊断方法[J]. 振动与冲击, 2020, 39(18): 153-160.
|
|
MA B, CAI W D, ZHAO D L. Intelligent diagnosis method based on GAN sample generation technology[J]. Journal of Vibration and Shock, 2020, 39(18): 153-160 (in Chinese).
|
21 |
袁壮, 董瑞, 张来斌, 等. 深度领域自适应及其在跨工况故障诊断中的应用[J]. 振动与冲击, 2020, 39(12): 286-293.
|
|
YUAN Z, DONG R, ZHANG L B, et al. Deep domain adaptation and its application in fault diagnosis across working conditions[J]. Journal of Vibration and Shock, 2020, 39(12): 286-293 (in Chinese).
|
22 |
柏壮壮, 卢一相, 高清维, 等. 基于自适应紧框架学习的轴承故障诊断[J]. 振动与冲击, 2021, 40(12): 296-303.
|
|
BAI Z Z, LU Y X, GAO Q W, et al. Bearing fault diagnosis based on adaptive tight frame learning[J]. Journal of Vibration and Shock, 2021, 40(12): 296-303 (in Chinese).
|
23 |
董光玲, 姚郁, 贺风华, 等. 制导精度一体化试验的Bayesian样本量计算方法[J]. 航空学报, 2015, 36(2): 575-584.
|
|
DONG G L, YAO Y, HE F H, et al. Bayesian sample size determination for integrated test of missile hit accuracy[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 575-584 (in Chinese).
|
24 |
GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[J]. Journal of Machine Learning Research, 2011, 15: 315-323.
|
25 |
SMITH W A, RANDALL R B, Randall. Rolling element bearing diagnostics using the case western reserve university data: a benchmark study[J]. Mechanical Systems & Signal Processing, 2015, 64-65: 100 -131.
|
26 |
LEE D, SIU V, CRUZ R, et al. Convolutional neural net and bearing fault analysis[C]∥Proceedings of the International Conference on Data Mining, 2016: 194-200.
|
27 |
刘海宁, 宋方臻, 窦仁杰, 等. 小数据条件下基于测地流核函数的域自适应故障诊断方法研究[J]. 振动与冲击, 2018, 37(18): 36-42.
|
|
LIU H N, SONG F Z, DOU R J, et al. Domain adaptive fault diagnosis based on the geodesic flow kernel under small data condition[J]. Journal of Vibration and Shock, 2018, 37(18): 36-42 (in Chinese).
|
28 |
PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22 (2): 199-210.
|
29 |
GONG B Q, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation[C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
30 |
CHEN C, SHEN F, XU J W, et al. Domain adaptation-based transfer learning for gear fault diagnosis under varying working conditions[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3500510.
|
31 |
CHEN X H, ZHANG B, GAO D, et al. Bearing fault diagnosis base on multi-scale CNN and LSTM model[J]. Journal of Intelligent Manufacturing, 2021, 32: 971-987.
|
32 |
杨国安. 滚动轴承故障诊断实用技术[M]. 北京: 中国石化出版社, 2012.
|
|
YANG G A. Techniques for rolling bearing fault diagnosis[M]. Beijing: China Petrochemical Press, 2012 (in Chinese).
|