航空学报 > 2018, Vol. 39 Issue (8): 122111-122111   doi: 10.7527/S1000-6893.2018.22111

翼型动态失速等离子体流动控制试验

李国强1,2, 常智强2, 张鑫2, 阳鹏宇2, 陈立2   

  1. 1. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000;
    2. 中国空气动力研究与发展中心 低速空气动力学研究所, 绵阳 621000
  • 收稿日期:2018-03-05 修回日期:2018-04-09 出版日期:2018-08-15 发布日期:2018-04-09
  • 通讯作者: 李国强 E-mail:liguoqiang5169299@126.com
  • 基金资助:
    装备预先研究专用技术项目(30103010301,30103010304);国家"973"计划(2014CB046200)

Experiment on flow control of airfoil dynamic stall using plasma actuator

LI Guoqiang1,2, CHANG Zhiqiang2, ZHANG Xin2, YANG Pengyu2, CHEN Li2   

  1. 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
  • Received:2018-03-05 Revised:2018-04-09 Online:2018-08-15 Published:2018-04-09
  • Supported by:
    Equipment Pre-research Foundation (30103010301, 30103010304);National Basic Research Program of China (2014CB046200)

摘要: 针对动态失速引起的翼型气动性能恶化的问题,利用小型化的激励电源和介质阻挡放电等离子体激励器,借助动态压力测量和外触发式粒子图像测速(PIV)等手段开展了翼型动态失速等离子体流动控制试验研究。结果表明,等离子体气动激励能够有效控制翼型动态失速,改善平均气动力,提高翼型气动效率,减小气动力随迎角变化的迟滞区域。等离子体诱导出前缘附近的贴体翼面涡,促进分离流再附;增加了上翼面0.2~0.4弦长区域的吸力,减小了升力系数功率谱密度(PSD)分布的二、三、四阶能量幅值,在研究工况下实现了平均升力系数增加7.1%、失速迎角推迟1.3°和迟滞区域减小4.5%的明显控制效果;4°~9°迎角段,等离子体使得翼型平均阻力系数减小40%。此外,振荡频率增加使翼型绕流的非定常性增强,较高雷诺数下的翼型动态分离涡更加难以被抑制,均需要增加等离子体激励强度才能达到较好的控制效果。

关键词: 翼型, 动态失速, 流动控制, 等离子体, 介质阻挡放电, 风洞试验

Abstract: In view of the problem of deterioration of aerodynamic performance of the airfoil due to dynamic stall, the miniaturized actuation power supply and dielectric barrier discharge plasma actuator are employed to conduct experimental study on the plasma flow control of airfoil dynamic stall by means of dynamic pressure measurement and external trigger Particle Image Velocimetry (PIV). It is shown that the aerodynamic actuation of dielectric barrier discharge plasma can effectively control the airfoil dynamic stall, improve the average aerodynamic force, increase aerodynamic efficiency, and reduce the hysteresis loop region when aerodynamic force varies with the angle of attack. The plasma actuator induces vortex near the leading edge, which promotes the separation flow reattaching to the airfoil surface. The plasma increases the suction of 0.2-0.4 chord length region of the upper surface, and weakens the second, third and fourth order energy of the Power Spectral Density (PSD) distribution. The average lift coefficient is increased by 7.1%, the stall angle of attack is delayed by 1.3°, and the hysteresis loop region is decreased by 4.5%; at the angle of attack of 4°-9°, the plasma actuator reduces the average drag coefficient of the airfoil by 40%. With the increase of the oscillation frequency, the unsteady performance of the flow around airfoil is enhanced, and it is more difficult to suppress the dynamic separation vortices at higher Reynolds number. In these cases, it is necessary to increase the plasma actuation intensity to achieve better control effect.

Key words: airfoil, dynamic stall, flow control, plasma, dielectric barrier discharge, wind tunnel test

中图分类号: