航空学报 > 2024, Vol. 45 Issue (9): 529828-529828   doi: 10.7527/S1000-6893.2023.29828

基于深度学习的高速直升机旋翼翼型气动优化设计

柳家齐, 陈荣钱(), 楼锦华, 韩旭, 吴昊, 尤延铖   

  1. 厦门大学 航空航天学院,厦门 361005
  • 收稿日期:2023-11-02 修回日期:2023-11-27 接受日期:2023-12-25 出版日期:2024-05-15 发布日期:2024-01-04
  • 通讯作者: 陈荣钱 E-mail:rqchen@xmu.edu.cn
  • 基金资助:
    国家自然科学基金(12072305);旋翼空气动力学重点实验室开放课题(2102RAL202101-2);气动噪声控制重点实验室开放课题(ANCL20220203);航空科学基金(20200057068001)

Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning

Jiaqi LIU, Rongqian CHEN(), Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU   

  1. School of Aerospace Engineering,Xiamen University,Xiamen 361005,China
  • Received:2023-11-02 Revised:2023-11-27 Accepted:2023-12-25 Online:2024-05-15 Published:2024-01-04
  • Contact: Rongqian CHEN E-mail:rqchen@xmu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(12072305);Rotor Aerodynamics Key Laboratory Project(2102RAL202101-2);Key Laboratory of Aerodynamic Noise Control(ANCL20220203);Aeronautical Science Foundation of China(20200057068001)

摘要:

针对高速直升机旋翼翼型的气动优化问题,建立了一种基于深度学习的翼型多目标气动优化框架。首先,搭建深度神经网络预测旋翼翼型气动力系数的代理模型。以SC1095旋翼翼型作为基准翼型,采用CST方法对翼型进行参数化表示,采用拉丁超立方采样方法生成用于深度神经网络训练的翼型数据集。综合考虑直升机前飞、机动和悬停状态等多设计点的气动性能,开展了基于深度神经网络的代理模型结合多岛遗传算法的高速直升机旋翼翼型多目标气动优化设计。优化结果显示:相比于基准翼型,在没有损失悬停和机动性能的前提下,优化翼型显著改善了前飞性能。分别采用基准翼型和优化翼型建立共轴刚性旋翼,计算并分析前飞状态下基准旋翼和优化旋翼的气动性能,结果表明优化翼型可以显著地提升高速直升机旋翼的气动性能。

关键词: 旋翼翼型, 气动优化, 深度学习, 代理模型, 共轴刚性旋翼

Abstract:

To optimize the aerodynamic shape of high-speed helicopter rotor airfoils, a multi-objective optimization framework is proposed based on deep learning. Firstly, a deep neural network is constructed as a surrogate model to predict the aerodynamic coefficients of rotor airfoils. The rotor airfoil SC1095 is selected as the baseline airfoil. The Class function/Shape function Transformation (CST) method is employed to parameterize the airfoil, and the Latin hypercube sampling method is used to generate the airfoil dataset for training deep neural networks. Then, comprehensively considering the aerodynamic performance of multiple design points such as forward flight, maneuvering and hover of the helicopter, a multi-objective aerodynamic shape optimization of the high-speed helicopter rotor airfoil is conducted by combining the deep neural network surrogate model with the multi-island genetic algorithm. The optimization results show that compared with the baseline airfoil, the optimized airfoil can significantly improve its forward flight performance without compromising hover and maneuvering performance. Finally, a rigid coaxial rotor is generated using the baseline and optimized airfoil respectively. The aerodynamic performance of these rotors in forward flight is computed and analyzed. The results indicate that the optimized airfoil significantly enhances the aerodynamic performance of the high-speed helicopter rotor.

Key words: rotor airfoil, aerodynamic shape optimization, deep learning, surrogate model, rigid coaxial rotor

中图分类号: