1 |
吴希明, 牟晓伟. 直升机关键技术及未来发展与设想[J]. 空气动力学学报, 2021, 39(3): 1-10.
|
|
WU X M, MU X W. A perspective of the future development of key helicopter technologies[J]. Acta Aerodynamica Sinica, 2021, 39(3): 1-10 (in Chinese).
|
2 |
邓景辉. 直升机技术发展与展望[J]. 航空科学技术, 2021, 32(1): 10-16.
|
|
DENG J H. Development and prospect of helicopter technology[J]. Aeronautical Science & Technology, 2021, 32(1): 10-16 (in Chinese).
|
3 |
吴希明. 高速直升机发展现状、趋势与对策[J]. 南京航空航天大学学报, 2015, 47(2): 173-179.
|
|
WU X M. Current status, development trend and countermeasure for high-speed rotorcraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 173-179 (in Chinese).
|
4 |
ALLEN L D, LIM J W, HAEHNEL R B, et al. Rotor blade design framework for airfoil shape optimization with performance considerations[C]∥AIAA Scitech 2021 Forum. Reston: AIAA, 2021: 0068.
|
5 |
韩忠华, 高正红, 宋文萍, 等. 翼型研究的历史、现状与未来发展[J]. 空气动力学学报, 2021, 39(6): 1-36.
|
|
HAN Z H, GAO Z H, SONG W P, et al. On airfoil research and development: history, current status, and future directions[J]. Acta Aerodynamica Sinica, 2021, 39(6): 1-36 (in Chinese).
|
6 |
张卫国, 孙俊峰, 招启军, 等. 旋翼翼型气动设计与验证方法[J]. 空气动力学学报, 2021, 39(6): 136-148, 155.
|
|
ZHANG W G, SUN J F, ZHAO Q J, et al. Aerodynamic design and verification methods of rotor airfoils[J]. Acta Aerodynamica Sinica, 2021, 39(6): 136-148, 155 (in Chinese).
|
7 |
李萍, 庄开莲, 李静. 国外直升机旋翼翼型研究综述[J]. 直升机技术, 2007(3): 103-109.
|
|
LI P, ZHUANG K L, LI J. Summary of research on helicopter rotor airfoil abroad[J]. Helicopter Technique, 2007(3): 103-109 (in Chinese).
|
8 |
丁存伟, 杨旭东. 一种旋翼翼型多点多约束气动优化设计策略[J]. 航空计算技术, 2013, 43(1): 52-57.
|
|
DING C W, YANG X D. Multi-point aerodynamic optimization design strategy of rotor airfoil with multi-constrain conditions[J]. Aeronautical Computing Technique, 2013, 43(1): 52-57 (in Chinese).
|
9 |
JONES B, CROSSLEY W, LYRINTZIS A. Aerodynamic and aeroacoustic optimization of airfoils via a parallel genetic algorithm[C]∥ 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 1998: 4811.
|
10 |
王清, 招启军. 基于遗传算法的旋翼翼型综合气动优化设计[J]. 航空动力学报, 2016, 31(6): 1486-1495.
|
|
WANG Q, ZHAO Q J. Synthetical optimization design of rotor airfoil by genetic algorithm[J]. Journal of Aerospace Power, 2016, 31(6): 1486-1495 (in Chinese).
|
11 |
宋超, 周铸, 李伟斌, 等. 旋翼翼型高维多目标气动优化设计[J]. 北京航空航天大学学报, 2022, 48(1): 95-105.
|
|
SONG C, ZHOU Z, LI W B, et al. Many-objective aerodynamic optimization design for rotor airfoils[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 95-105 (in Chinese).
|
12 |
VU N A, LEE J W, SHU J I. Aerodynamic design optimization of helicopter rotor blades including airfoil shape for hover performance[J]. Chinese Journal of Aeronautics, 2013, 26(1): 1-8.
|
13 |
杨慧, 宋文萍, 韩忠华, 等. 旋翼翼型多目标多约束气动优化设计[J]. 航空学报, 2012, 33(7): 1218-1226.
|
|
YANG H, SONG W P, HAN Z H, et al. Multi-objective and multi-constrained optimization design for a helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1218-1226 (in Chinese).
|
14 |
孙俊峰, 卢风顺, 黄勇, 等. 旋翼翼型气动设计与评估软件HRADesign[J]. 空气动力学学报, 2021, 39(4): 59-68.
|
|
SUN J F, LU F S, HUANG Y, et al. Rotor airfoil aerodynamic design and evaluation software HRADesign[J]. Acta Aerodynamica Sinica, 2021, 39(4): 59-68 (in Chinese).
|
15 |
孙俊峰, 刘刚, 江雄, 等. 基于Kriging模型的旋翼翼型优化设计研究[J]. 空气动力学学报, 2013, 31(4): 437-441.
|
|
SUN J F, LIU G, JIANG X, et al. Research of rotor airfoil design optimization based on the Kriging model[J]. Acta Aerodynamica Sinica, 2013, 31(4): 437-441 (in Chinese).
|
16 |
崔森润, 李国强, 张卫国, 等. 直升机旋翼翼型高效优化设计方法[J]. 航空动力学报, 2023,doi: 10.13224/j.cnki.jasp.20220819 .
|
|
CUI S R, LI G Q, ZHANG W G, et al. Efficient optimization design method of helicopter rotor airfoil[J]. Journal of Aerospace Power, 2023,doi: 10.13224/j.cnki.jasp.20220819 (in Chinese).
|
17 |
ZHAO K, GAO Z H, HUANG J T, et al. Aerodynamic optimization of rotor airfoil based on multi-layer hierarchical constraint method[J]. Chinese Journal of Aeronautics, 2016, 29(6): 1541-1552.
|
18 |
尚克明, 招启军, 王海. 基于Euler方程的直升机旋翼翼型反设计方法[J]. 直升机技术, 2008(3): 92-97.
|
|
SHANG K M, ZHAO Q J, WANG H. An inverse design method for the helicopter rotor airfoil based on Euler equation[J]. Helicopter Technique, 2008(3): 92-97 (in Chinese).
|
19 |
尚克明, 招启军, 赵国庆, 等. 直升机旋翼翼型及桨叶气动外形反设计分析[J]. 南京航空航天大学学报, 2010, 42(5): 550-556.
|
|
SHANG K M, ZHAO Q J, ZHAO G Q, et al. Inverse design analysis on helicopter rotor airfoils and aerodynamic shapes[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(5): 550-556 (in Chinese).
|
20 |
赵国庆, 招启军. 基于目标压力分布的旋翼先进气动外形反设计分析方法[J]. 航空学报, 2014, 35(3): 744-755.
|
|
ZHAO G Q, ZHAO Q J. Inverse design analysis method on rotor with advanced aerodynamic configuration based upon target pressure distribution[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 744-755 (in Chinese).
|
21 |
赵欢, 高正红, 夏露. 基于新型多可信度代理模型的多目标优化方法[J]. 航空学报, 2023, 44(6): 126962.
|
|
ZHAO H, GAO Z H, XIA L. Novel multi-fidelity surrogate model assisted many-objective optimization method[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(6): 126962 (in Chinese).
|
22 |
陈笑天, 吴裕平, 田旭. 旋翼翼型中高速综合气动优化设计方法研究[J]. 航空科学技术, 2019, 30(9): 19-24.
|
|
CHEN X T, WU Y P, TIAN X. Research on comprehensive aerodynamic optimum design method of rotor airfoil at medium and high speed[J]. Aeronautical Science & Technology, 2019, 30(9): 19-24 (in Chinese).
|
23 |
张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689.
|
|
ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689 (in Chinese).
|
24 |
BRUNTON S L, NOACK B R, KOUMOUTSAKOS P. Machine learning for fluid mechanics[J]. Annual Review of Fluid Mechanics, 2020, 52: 477-508.
|
25 |
LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807: 155-166.
|
26 |
陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1): 522480.
|
|
CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522480 (in Chinese).
|
27 |
孙刚, 王聪, 王立悦, 等. 人工智能在气动设计中的应用与展望[J]. 民用飞机设计与研究, 2021(3): 1-9, 147.
|
|
SUN G, WANG C, WANG L Y, et al. Application and prospect of artificial intelligence in aerodynamic design[J]. Civil Aircraft Design & Research, 2021(3): 1-9, 147 (in Chinese).
|
28 |
LI J C, DU X S, MARTINS J R R A. Machine learning in aerodynamic shape optimization[J]. Progress in Aerospace Sciences, 2022, 134: 100849.
|
29 |
KUTZ J N. Deep learning in fluid dynamics[J]. Journal of Fluid Mechanics, 2017, 814: 1-4.
|
30 |
Dadone L U. Dynamic and analytical study of a rotor airfoil: NASA CR-2988[R]. Washington, D. C.: NASA, 1987.
|
31 |
COOK P H, FIRMIN M C P, MCDONALD M A. Aerofoil RAE 2822: Pressure distributions, and boundary layer and wake measurements[R]. Pairs: AGARD, 1979.
|
32 |
KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158.
|
33 |
BAGAI A. Aerodynamic Design of the Sikorsky X2 Technology Demonstrator™ Main Rotor Blade[C]∥American Helicopter Society 64th Annual Forum Proceedings. Rockville: American Helicopter Society, 2008: 1-16.
|
34 |
LIU J Q, CHEN R Q, SONG Q C, et al. Active flow control of helicopter rotor based on coflow jet[J]. International Journal of Aerospace Engineering, 2022, 2022: 9299470.
|