[1] KOCH C C, SMITH L H. Experimental evaluation of outer case blowing or bleeding of a single stage axial flow compressor, Part VI-Final report:CR-54592[R]. Washington, D. C.:NASA, 1970. [2] BAILEY E E, VOIT C H. Some observations of effects of porous casings on operating range of a single axial-flow compressor rotor:TM X-2120[R]. Washington, D. C.:NASA, 1970. [3] OSCARSON R P, WRIGHT D L. Experimental evaluation of a honeycomb rotor shroud configuration to improve the stall margin of a 0.5 hub-tip ratio single-stage compressor:Volume 1-Data and performance report:CR-72808[R]. Washington, D. C.:NASA, 1995. [4] OSCARSON R P, WRIGHT D L. Experimental evaluation of a honeycomb rotor shroud configuration to improve the stall margin of a 0.5 hub-tip ratio single-stage compressor:Volume 2-Data supplement:CR-72809[R]. Washington, D. C.:NASA, 1995. [5] OSBORN W M, LEWIS G L, HEIDELBERG L J. Effect of several porous casing treatments on stall limit and on overall performance of an axial-flow compressor rotor:TN D-6537[R]. Washington, D. C.:NASA, 1971. [6] MOORE R D, KOVICB G, BLADE R J. Effect of casing treatment on overall and blade-element performance of a compressor rotor:TN D-6538[R]. Washington, D. C.:NASA, 1971. [7] HATHAWAY M D. Self-recirculating casing treatment concept for enhanced compressor performance:GT-2002-30368[R]. New York:ASME, 2002. [8] YANG H, NUERNBERGER D, NICKE E, et al. Numerical investigation of casing treatment mechanisms with a conservative mixed-cell approach:GT2003-38483[R]. New York:ASME, 2003. [9] STRAZISAR A J, BRIGHT M M, THORP S, et al. Compressor stall control through endwall recirculation:GT2004-54295[R]. New York:ASME, 2004. [10] IYENGAR V, SANKAR L, NIAZA S. Assessment of the self-recirculating casing treatment concept applied to axial compressors:AIAA-2005-0632[R]. Reston, VA:AIAA, 2005. [11] TAKATA H, TSUKUDA Y. A study on configurations of casing treatment for axial-flow compressor[J]. Japan Society of Mechanical Engineers, 1984, 27(230):1675-1681. [12] 刘志伟, 张长生, 时静珣, 等. 缝式机匣处理的若干观测和机理探讨:DZH8521[R]. 西安:西北工业大学, 1985. LIU Z W, ZHANG C S, SHI J X, et al. Several observations and mechanisms explored of slots casing treatments:DZH8521[R]. Xi'an:Northwestern Polytechnical University, 1985(in Chinese). [13] 刘志伟, 张长生, 时静珣, 等. 倾斜缝机匣处理轴向位置对压气机性能影响的研究[J]. 工程热物理学报, 1987, 8(1):52-54. LIU Z W, ZHANG C S, SHI J X, et al. A study on effects of axial positions of skewed slots casing treatment on compressor performance[J]. Journal of Engineering Thermophysics, 1987, 8(1):52-54(in Chinese). [14] WILKE I, KAU H P. A numerical investigation of the influence of casing treatments on the tip leakage flow in a HPC front stage:GT2002-30642[R]. New York:ASME, 2002. [15] WILKE I, KAU H P. A numerical investigation of the flow mechanisms in a HPC front stage with axial slots[J]. Journal of Turbomachinery, 2004, 126(3):339-349. [16] 周小勇. 跨音速压气机机匣处理扩稳机理和设计方法研究[D]. 北京:中国科学院工程热物理研究所, 2015:113-130. ZHOU X Y. Investigation of the mechanism for stall margin improvement and design methods of casing treatments in transonic compressors[D]. Beijing:Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2015:113-130(in Chinese). [17] 马宁. 高速压气机低速模化相似准则及轴向缝机匣处理流动机理研究[D]. 北京:中国科学院工程热物理研究所,2016:86-103. MA N. Research on the low-speed modeling similarity criteria for high-speed compressors and the flow mechanisms of axial-slot casing treatment[D]. Beijing:Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2016:86-103(in Chinese). [18] STRAZISAR A J, WOOD J R, HATHAWAY M D, et al. Laser anemometer measurements in a transonic axial-flow fan rotor:TP-2879[R]. Washington, D. C.:NASA, 1989. [19] FIDALGO V J, HALL C A, COLIN Y. A study of fan-distortion interaction within the NASA Rotor67 transonic stage:GT2010-22914[R]. New York:ASME, 2010. [20] 杜娟. 跨音压气机/风扇转子叶顶泄漏流动的非定常机制研究[D]. 北京:中国科学院工程热物理研究所, 2010:64-95. DU J. Investigation on the unsteady mechanism of tip leakage flow in transonic compressor/fan rotors[D]. Beijing:Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2010:64-95(in Chinese). [21] 南希. 动叶端区轴向动量控制体分析方法及其在周向槽机匣处理中的应用[D]. 北京:中国科学院工程热物理研究所, 2011:33-38. NAN X. The compressor rotor tip control volume method and it's application on circumferential groove casing treatment[D]. Beijing:Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2011:33-38(in Chinese). [22] 张皓光, 楚武利, 吴艳辉, 等. 轴向倾斜缝机匣处理影响压气机性能的机理[J]. 推进技术, 2010, 31(5):555-561. ZHANG H G, CHU W L, WU Y H, et al. Investigation of the flow mechanisms of affecting compressor performance with axial skewed slots casing treatment[J]. Journal of Propulsion Technology, 2010, 31(5):555-561(in Chinese). [23] 张皓光, 楚武利, 吴艳辉. 缝式机匣处理轴向位置对压气机特性影响的机理[J]. 航空动力学报, 2011, 26(1):92-98. ZHANG H G, CHU W L, WU Y H. Mechanism of influences of axial positions of axial skewed slot casing treatment on a compressor performance[J]. Journal of Aerospace Power, 2011, 26(1):92-98(in Chinese). [24] VO H D, TAN C S, GRETIZER E M. Criteria for spike initiated rotating stall[J]. Journal of Turbomachinery, 2008, 130(1):011023. [25] WILKE I, KAU H P, BRIGNOLE G. Numerically aided design of a high-efficient casing treatments for a transonic compressor:GT2005-68993[R]. New York:ASME, 2005. [26] 王维. 轴流压气机处理机匣背腔机理及叶尖处理研究[D]. 西安:西北工业大学, 2013:32-39. WANG W. Investigation on mechanism of plenum on casing treatment and tip treatment in axial compressor[D]. Xi'an:Northwestern Polytechnical University, 2013:32-39(in Chinese). |