[1] ACCORSI M, LEONARD J, BENNEY R, et al. Structure modeling of parachute dynamics[J]. AIAA Journal, 2000, 38(1):139-146.
[2] STEIN K, TEZDUYAR T E, SATHE S, et al. Simulation of parachute dynamics during control line input operations:AIAA-2003-2151[R]. Reston:AIAA, 2003.
[3] STEIN K, BENNEY R J, TEZDUYAR T E, et al. Fluid-structure interactions of a round parachute:Modeling and simulation techniques[J]. Journal of Aircraft, 2001, 38(5):800-808.
[4] SADECK J E, LEE C K. Continuous disreefing method for parachute opening[J]. Journal of Aircraft, 2009, 46(2):501-504.
[5] JOHARI H, DESABRAIS K J. A novel parachute canopy geometry for airdrop:AIAA-2005-1619[R]. Reston:AIAA,2005.
[6] 余莉, 史献林, 明晓. 降落伞充气过程的数值模拟[J]. 航空学报, 2007, 28(1):52-57. YU L, SHI X L, MING X. Numerical simulation of parachute during opening process[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):52-57(in Chinese).
[7] 张红英, 刘卫华, 童明波, 等. 降落伞初始充气阶段数值模拟[J]. 南京航空航天大学学报, 2009, 41(2):207-211. ZHANG H Y, LIU W H, TONG M B, et al. Numerical simulation of parachute initial inflation phase[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2009, 41(2):207-211(in Chinese).
[8] 吴卓, 曹义华, 宋乾福. 锥形降落伞开伞过程流动结构相互作用的数值模拟[J]. 航空动力学报, 2009,24(7):1584-1593. WU Z, CAO Y H, SONG Q F. Numerical simulation of fluid-structure interaction in conical parachute's opening process[J]. Journal of Aerospace Power, 2009, 24(7):1584-1593(in Chinese).
[9] 高兴龙, 唐乾刚, 张青斌, 等. 开缝伞充气过程流固耦合数值研究[J]. 航空学报, 2013, 34(10):2265-2276. GAO X L, TANG Q G, ZHANG Q B, et al. Numerical study on fluid-structure interaction of slot-parachute's inflation process[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10):2265-2276(in Chinese).
[10] 贾贺, 荣伟, 陈国良. 基于LS-DYNA软件的降落伞充气过程仿真研究[J]. 航天器环境工程, 2010, 27(3):367-373. JIA H, RONG W, CHEN G L. The simulation of parachute inflation process based on LS-DYNA software[J]. Spacecraft Environment Engineering, 2010, 27(3):367-373(in Chinese).
[11] TUTT B, PETERSON D, ROLAND S, et al. Parachute load prediction using a combination of empirical data and fluid-structure interaction simulations:AIAA-2011-2544[R]. Reston:AIAA, 2011.
[12] KIM J D, LI Y, LI X L. Simulation of parachute FSI using the front tracking method[J]. Journal of Fluids and Structures, 2013, 37:100-119.
[13] LU K, ACCORSI M, LEONARD J. Finite element analysis of membrane wrinkling[J]. International Journal for Numerical Methods in Engineering, 2001, 50(5):1017-1038.
[14] ZHANG W Q, ACCORSI M, LEONARD J. Parallel implementation of structural dynamic analysis for parachute simulation[J]. AIAA Journal, 2006, 44(7):1419-1427.
[15] TEZDUYAR T E, OSAWA Y. Fluid-structure interactions of a parachute crossing the far wake of an aircraft[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191(6-7):717-726.
[16] XU Z L, ACCORSI M, LEONARD J. Simulation of dynamic contact problems in parachute systems[J]. Journal of Aerospace Computing Information and Communication, 2004, 1(7):288-307.
[17] BAZILEVS Y, TAKIZAWA K, TEZDUYAR T E. Computational fluid-structure interaction:Methods and applications[M]. Hoboken, NJ:John Wiley & Sons Ltd., 2013:163-167.
[18] LEE E S, YOUN S K. Finite element analysis of wrinkling membrane structures with large deformations[J]. Finite Elements in Analysis and Design, 2006, 42(8-9):780-791.
[19] 唐建民, 卓家寿. 悬索结构大位移分析改进的两节点索单元模型[J]. 河海大学学报, 1999, 27(4):16-19. TANG J M, ZHUO J S. An improved two-node cable element for large deformation analysis of cable structures[J]. Journal of Hohai University, 1999, 27(4):16-19(in Chinese).
[20] LAURSEN T A. Computational contact and impact mechanics, fundamentals of modeling interfacial phenomena in nonlinear finite element analysis[M]. New York:Springer-Verlag Berlin Heidelberg, 2002:109-196.
[21] LAURSEN T A, SIMO J C. A continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems[J]. International Journal for Numerical Methods in Engineering, 1993, 36(20):3451-3485.
[22] LEE C K. Experimental investigation of full-scale and model parachute opening[C]//8th Aerodynamic Decelerator and Balloon Technology Conference. Reston:AIAA, 1984:220. |