收稿日期:2024-09-23
修回日期:2024-10-15
接受日期:2024-11-07
出版日期:2024-11-21
发布日期:2024-11-20
通讯作者:
孙振华
E-mail:rainszh@163.com
Yujia FENG1, Zhenhua SUN1,2(
), Kun WANG3, Jiaqi GUO1
Received:2024-09-23
Revised:2024-10-15
Accepted:2024-11-07
Online:2024-11-21
Published:2024-11-20
Contact:
Zhenhua SUN
E-mail:rainszh@163.com
摘要:
在液体燃料中添加硼粉、胶凝剂及其他改性物质制成的含硼凝胶推进剂是为冲压发动机等限体积推进装置提供动力的理想燃料,但是含硼凝胶推进剂的应用也带来了新的技术挑战,包括但不限于具有优良稳定性和流变特性的高含硼量凝胶推进剂制备,推进剂的可控供给和高效雾化,以及发动机的高效燃烧组织。概述了含硼凝胶推进剂的发展历史和国内外已开展的相关研究工作,对凝胶推进剂的雾化技术进行了详细介绍,并提出了仍有待进一步深入研究的问题。总结了含硼凝胶的单液滴和喷雾燃烧特性,梳理了国内外关于含硼凝胶冲压发动机的研究工作,介绍了含硼凝胶冲压发动机的燃烧组织特性。最后,对含硼凝胶冲压发动机的未来研究方向进行了展望。
中图分类号:
冯昱嘉, 孙振华, 王坤, 郭家琦. 含硼凝胶冲压发动机技术研究进展[J]. 航空学报, 2025, 46(14): 31256.
Yujia FENG, Zhenhua SUN, Kun WANG, Jiaqi GUO. Advances in boron-loaded gel ramjet technologies[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(14): 31256.
表 2
国内外含硼凝胶推进剂及其相关研究
| 研究者 | 燃料组分 | 胶凝剂组分 | 研究内容 |
|---|---|---|---|
| Solomon等[ | 38.25%JP-8+55%B+6.75%胶凝剂溶液 | 50%甲基异戊酮(溶剂)+50%有机胶凝剂 | 单液滴燃烧特性试验研究 |
| 35%煤油+35.75%B+7.125%高氯酸纳+7.125%Al+15%胶凝剂 | paraffin 624 | 单液滴燃烧特性试验研究 | |
| 基于缩核模型的单液滴蒸发过程的建模与分析 | |||
| Balas和Natan[ | 57%Jet-A+40%B+3%胶凝剂 | 硬脂酸铝 | 燃料燃烧产物冷凝过程对冲压发动机性能影响的数值仿真研究 |
| Madhumitha等[ | Jet A-1+10%/20%/30%B+5.5%胶凝剂 | Thixatrol ST | 硼含量对燃料流变特性及单液滴燃烧特性影响的试验研究 |
| 64.5% Jet A-1+30%含能颗粒(B+10%/20%/30% Al/Ti/Mg)+5.5%胶凝剂 | Al/Ti/Mg的添加对含硼凝胶液滴点火燃烧特性影响的试验研究 | ||
| Jyoti和Baek[ | 乙醇+10%/20%B+6%胶凝剂 | 甲基纤维素 | 含硼量对燃料流变特性影响的试验研究 |
| 杨大力等[ | 煤油+B+胶凝剂 B含量:2%、5%、10% 胶凝剂含量:2%、5%、10% | 有机胶凝剂 | 胶凝剂含量及硼含量对燃料单液滴燃烧特性影响的试验研究 |
| 煤油+5%/10%/15%/20%/25%/30%B+3%胶凝剂 | 聚酰胺树脂 | 含硼煤油凝胶流变特性及喷雾燃烧特性试验研究 | |
| 肖云雷等[ | RP-1+5%/10%/20%/30%/40% B+3%胶凝剂 | 聚酰胺树脂 | 含硼凝胶推进剂雾化特性及发动机燃烧组织研究 |
| 黄利亚等[ | 煤油+40%/45%/50%B+2.7%/1.8%/2.2%正己醇+2.5%/2.0%/2.5%胶凝剂 | 33.3%辛酰纤维素+66.6%Thixatrol ST | 燃料配方与制备方法优化研究及 应用于发动机的直连点火燃烧试验 |
| 靳雨树等[ | 83.16%JP-10+16%B+0.84%胶凝剂 | 正丁醚 | 煤油凝胶中硼的添加对超燃冲压发动机工作特性影响的试验研究 |
| 梁坤等[ | 煤油+30%/40%/50%B+胶凝剂 | Thixatrol ST | 含硼凝胶雾化及爆轰燃烧特性试验研究 |
表 5
含硼凝胶燃烧特性及燃烧组织相关研究
| 研究者 | 研究方法 | 主要研究成果或结论 |
|---|---|---|
| Solomon等 | 单液滴燃烧试验 | 观测到含硼凝胶周期性微爆过程;硼颗粒添加使得凝胶煤油组分燃烧时间显著增长;液体组分耗尽后,硼以海绵状多空聚团形式存在[ |
| 单液滴数学物理模型构建及仿真 | 基于缩核模型建立了蒸发过程煤油/B/Al/高氯酸盐凝胶体系单液滴内部温度分布计算方法,评估了单液滴热特性,分析了液滴直径、环境压力、表面热流密度、固体组分含量对蒸发过程的影响[ | |
| Balas和Natan | 发动机内流场数学物理模型构建及仿真 | 冷气掺混促进氧化产物冷凝可使发动机比冲提高10%以上,且随着巡航高度的降低,比冲至多可提高25%[ |
| Madhumitha等 | 单液滴燃烧试验 | 含硼量提高使得液滴燃烧速率常数、微爆频率、硼燃烧完全度提高;高含硼量液滴具有更低的火焰高度[ |
| 铝和钛均能显著降低硼的点火延迟;铝的添加抑制了硼的完全燃烧,而钛能够促进硼的完全燃烧;镁颗粒添加可显著降低点火延迟时间,但对硼的完全度无显著影响[ | ||
| Kuznetsov等 | 发动机地面直连试验 | 搭建含硼凝胶冲压发动机直连试验台并设计制造实验室级发动机[ |
| 杨大力等 | 单液滴燃烧试验 | 胶凝剂含量提高导致液滴微爆开始时间推迟,微爆强度提高;硼含量提高导致液滴微爆开始时间提前,微爆强度提高胶凝剂含量及硼含量对燃料单液滴燃烧特性影响的试验研究[ |
| 喷雾燃烧试验 | 硼的添加可以强化换热,加快喷雾液滴中煤油蒸发;硼颗粒含量增加,喷雾火焰托举高度降低,火焰长度及火焰宽度增大;喷雾速度过高导致有限空间内液滴无法充分燃烧;喷口附近出现微爆现象,火焰其他部分未观测到微爆现象[ | |
| 肖云雷等 | 发动机地面直连试验 发动机内流场数学物理模型构建及仿真 | 建立硼团聚燃烧模型和发动机内流场数值仿真方法;通过试验和仿真获得了试验发动机燃烧组织特性[ |
| 靳雨树等 | 发动机地面直连试验 | 添加少量硼(16%)可提高煤油凝胶在超声速燃烧室中的燃烧效率[ |
| 梁坤等 | 爆轰试验 | 实现了40%含硼量煤油凝胶燃料在氢氧预混气中的起爆,试验条件下爆轰管中压力峰值达到8.65 MPa,爆轰波传播速度达到2 750 m/s[ |
| [1] | 杨大力. 含金属颗粒煤油凝胶喷雾燃烧过程研究[D]. 长沙: 国防科技大学, 2020. |
| YANG D L. Study on spray combustion process of kerosene gel containing metal particles[D]. Changsha: National University of Defense Technology, 2020 (in Chinese). | |
| [2] | HUANG L Y, GONG M Q, ZHANG J R, et al. High-energy-density metallized gel propellant by hydrogen-bonded polymer-small molecules for enhanced stability and shear-thinning performance[J]. Acta Astronautica, 2024, 214: 356-365. |
| [3] | 靳雨树, 徐旭, 杨庆春. 含能碳氢燃料燃烧特性及发动机应用研究进展[J]. 航空学报, 2023, 44(5): 026690. |
| JIN Y S, XU X, YANG Q C. Research progress in combustion characteristics and engine applications of energetic hydrocarbon fuels[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 026690 (in Chinese). | |
| [4] | 郑日恒, 王登云, 程恒星, 等. 一种固液冲压发动机: CN103670797A[P]. 2014-03-26. |
| ZHENG R H, WANG D Y, CHENG H X, et al. A solid-liquid ramjet engine: CN103670797A[P]. 2014-03-26 (in Chinese). | |
| [5] | JIN Y S, DOU S Y, YANG Q C, et al. Performance characteristics of a scramjet engine using JP-10 fuel containing aluminum nanoparticles[J]. Acta Astronautica, 2021, 185: 70-77. |
| [6] | 孙维国, 史瑞华, 林左鸣, 等. 基于固液相变燃料的冲压发动机[J]. 航空学报, 2019, 40(5): 122780. |
| SUN W G, SHI R H, LIN Z M, et al. A ramjet based on solid-liquid phase change fuels[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122780 (in Chinese). | |
| [7] | NATAN B, RAHIMI S. The status of gel propellants in year 2000[J]. International Journal of Energetic Materials and Chemical Propulsion, 2002, 5(1-6): 172-194. |
| [8] | PADWAL M B, NATAN B, MISHRA D P. Gel propellants[J]. Progress in Energy and Combustion Science, 2021, 83: 100885. |
| [9] | RAY A B. Process of producing solidified fuel: US2046209[P]. 1936-06-30. |
| [10] | CALABRO M. Overview on hybrid propulsion[C]∥Progress in Propulsion Physics. EDP Sciences, 2011, 2: 353-374. |
| [11] | 王中, 梁勇, 刘素梅, 等. 美、俄、德凝胶推进剂的发展现状[J]. 飞航导弹, 2010(2): 76-79. |
| WANG Z, LIANG Y, LIU S M, et al. Development status of gel propellants in the United States, Russia and Germany[J]. Aerodynamic Missiles Journal, 2010(2): 76-79 (in Chinese). | |
| [12] | 张玫, 张蒙正, 郝智超, 等. 凝胶推进剂性能分析[C]∥中国化学会第五届全国化学推进剂学术会议论文集. 大连, 2011. |
| ZHANG M, ZHANG M Z, HAO Z C, et al. Performance analysis of gel propellant[C]∥The 5th National Conference on Chemical Propellant. Dalian, 2011 (in Chinese). | |
| [13] | MADHUMITHA R, KARMAKAR S. Boron-loaded gel fuel as potential fuel for ramjet and scramjet engines-recent advancements[J]. FirePhysChem, 2024, 4(3): 185-200. |
| [14] | 周俊虎, 刘建忠, 张彦威, 等. 硼的点火和燃烧[M]. 北京: 科学出版社, 2015. |
| ZHOU J H, LIU J Z, ZHANG Y W, et al. Ignition and combustion of boron[M]. Beijing: Science Press, 2015 (in Chinese). | |
| [15] | 肖云雷. 含硼凝胶冲压发动机内部燃烧过程与燃烧组织方法研究[D]. 长沙: 国防科技大学, 2019. |
| XIAO Y L. Study on internal combustion process and combustion organization method of boron-containing gel ramjet[D]. Changsha: National University of Defense Technology, 2019 (in Chinese). | |
| [16] | SOLOMON Y, NATAN B. Burning of organic-gellant-based gel fuel droplets in atmospheric pressure[C]∥The 42nd Israel Annual Conference on Aerospace Sciences. Israel: Israel Institute of Technology, 2002. |
| [17] | SOLOMON Y, NATAN B. Experimental investigation of the combustion of organic-gellant-based gel fuel droplets[J]. Combustion Science and Technology, 2006, 178(6): 1185-1199. |
| [18] | SOLOMON Y, GRINSTEIN D, NATAN B. Active boron dispersion and ignition in gel droplet[J]. International Journal of Energetic Materials and Chemical Propulsion, 2016, 15(3): 197-213. |
| [19] | SOLOMON Y, GRINSTEIN D, NATAN B. Pyrotechnic dispersion and ignition of boron particles in gels: AIAA-2016-4595[R]. Reston: AIAA, 2016. |
| [20] | SOLOMON Y, GRINSTEIN D, NATAN B. Dispersion of boron particles from a burning gel droplet[J]. Journal of Propulsion and Power, 2018, 34(6): 1586-1595. |
| [21] | BALAS S, NATAN B. Boron oxide condensation in a hydrocarbon-boron gel fuel ramjet[J]. Journal of Propulsion and Power, 2016, 32(4): 967-974. |
| [22] | MADHUMITHA R, SHAIBYA K, PAWAN K O, et al. Effect of particle loading on the burning characteristics of boron-laden gel fuel droplet[J]. International Journal of Energetic Materials and Chemical Propulsion, 2022, 21(6): 21-46. |
| [23] | MADHUMITHA R, MIGLANI A, KARMAKAR S. Impact of aluminium and titanium additives on ignition and combustion in boron-loaded gelled Jet A-1 fuel[J/OL]. Combustion Science and Technology (2024-08-12)[2024-10-21]. . |
| [24] | MADHUMITHA R, PRABHUDEVA P, KARMAKAR S. Effect of magnesium on ignition and combustion of boron-loaded gelled jet a-1 fuel[J]. International Journal of Energetic Materials and Chemical Propulsion, 2024, 23(4): 61-74. |
| [25] | JYOTI & V S B, WOOK S. Formulation and comparative study of rheological properties of loaded and unloaded ethanol-based gel propellants[J]. Journal of Energetic Materials, 2015, 33(2): 125-139. |
| [26] | 杨大力, 夏智勋, 胡建新, 等. 金属基凝胶推进剂单滴蒸发燃烧试验[C]∥中国工程热物理学会2014年年会论文集, 2014. |
| YANG D L, XIA Z X, HU J X, et al. Experiment on single drop evaporative combustion of metalized gel propellant[C]∥2014 Chinese Society of Engineering Thermophysics Annual Meeting, 2014 (in Chinsees). | |
| [27] | 杨大力, 夏智勋, 胡建新, 等. 煤油凝胶单液滴燃烧特性试验[J]. 航空学报, 2016, 37(3): 847-853. |
| YANG D L, XIA Z X, HU J X, et al. Experimental study on ignition and combustion characteristics of single kerosene gel droplet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 847-853 (in Chinese). | |
| [28] | YANG D L, XIA Z X, HUANG L Y, et al. Synthesis of metallized kerosene gel and its characterization for propulsion applications[J]. Fuel, 2020, 262: 116684. |
| [29] | XIAO Y L, XIA Z X, HUANG L Y, et al. Atomization of gel fuels with solid particle addition utilizing an air atomizing nozzle[J]. Energies, 2018, 11(11): 2959. |
| [30] | XIAO Y L, XIA Z X, HUANG L Y, et al. Experimental investigation of the effects of chamber length and boron content on boron-based gel fuel ramjet performance[J]. Acta Astronautica, 2019, 160: 101-105. |
| [31] | JIN Y S, XU X, YANG Q C, et al. Combustion behavior of hydrocarbon/boron gel-fueled scramjet[J]. AIAA Journal, 2022, 60(6): 3834-3843. |
| [32] | 靳雨树, 李智欣, 徐旭, 等. 含硼碳氢燃料在超燃冲压发动机中的燃烧试验研究[J]. 推进技术, 2023, 44(3): 260-270. |
| JIN Y S, LI Z X, XU X, et al. Experimental study on combustion of boron containing hydrocarbon fuel in scramjet[J]. Journal of Propulsion Technology, 2023, 44(3): 260-270 (in Chinese). | |
| [33] | LIANG K, HUANG L Y, ZHANG J R, et al. Experimental investigation on detonation characteristics of boron-rich gelled propellant in static premixed combustible gases[J]. Acta Astronautica, 2024, 220: 263-273. |
| [34] | 杨鸿辉, 赵程程, 王勇, 等. 凝胶推进剂及其流变特性研究进展[J]. 西安交通大学学报, 2022, 56(5): 166-179. |
| YANG H H, ZHAO C C, WANG Y, et al. Progress in study on gel propellants and their rheological properties[J]. Journal of Xi’an Jiaotong University, 2022, 56(5): 166-179 (in Chinese). | |
| [35] | JEJURKAR S Y, YADAV G, MISHRA D P. Characterization of impinging jet sprays of gelled propellants loaded with nanoparticles in the impact wave regime[J]. Fuel, 2018, 228: 10-22. |
| [36] | 胡春波, 李超, 孙海俊, 等. 粉末燃料冲压发动机研究进展[J]. 固体火箭技术, 2017, 40(3): 269-276. |
| HU C B, LI C, SUN H J, et al. A summary of powder-fueled ramjet[J]. Journal of Solid Rocket Technology, 2017, 40(3): 269-276 (in Chinese). | |
| [37] | KUZNETSOV A, SOLOMON Y, NATAN B. Development of a lab-scale gel fuel ramjet combustor: AIAA-2010-7124[R]. Reston: AIAA, 2010. |
| [38] | 封锋, 李奇, 周亦俊, 等. 凝胶膏体火箭发动机推进剂的持续供给装置: CN103603746A[P]. 2014-02-26. |
| FENG F, LI Q, ZHOU Y J, et al. Continuous supply device of gel/pasty rocket engine propellant: CN103603746A[P]. 2014-02-26 (in Chinese). | |
| [39] | 叶小兵, 陈雄, 杨海, 等. 以固体推进剂为动力源的膏体推进剂多次连续供给装置: CN204738887U[P]. 2015-11-04. |
| YE X B, CEHN X, YANG H, et al. A multiple continuous supply device for pasty propellant using solid propellant as the power source: CN204738887U[P]. 2015-11-04 (in Chinese). | |
| [40] | 冯运超, 赵李北, 杨鹏年, 等. 一种宽速域高机动吸气式组合推进动力系统及导弹: CN114320662A[P]. 2022-04-12. |
| FENG Y C, ZHAO L B, YANG P N, et al. A wide speed range and high mobility aspirated combined propulsion power system and missile: CN114320662A[P]. 2022-04-12 (in Chinese). | |
| [41] | PINTO P C, RAMSEL J, NIEDERMAIER H, et al. Control characteristics of a gel propellant throtteable rocket motor with a pintle nozzle:AIAA-2014-3797[R]. Reston: AIAA, 2014. |
| [42] | 张惠军. 科氏力质量流量计在凝胶推进剂火箭发动机试车中的应用[J]. 火箭推进, 2004, 30(6): 55-60. |
| ZHANG H J. Application of Coriolis force mass flowmeter in gelled propellant rocket engine test[J]. Journal of Rocket Propulsion, 2004, 30(6): 55-60 (in Chinese). | |
| [43] | 李前虎. 新型膏体冲压发动机流量测量[J]. 弹箭与制导学报, 2014, 34(5): 123-125. |
| LI Q H. Flow measurement of new pasty propellant ramjet[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(5): 123-125 (in Chinese). | |
| [44] | 常莹, 张周焕, 孙新新. 主动式活塞凝胶流量标准装置的建立[J]. 火箭推进, 2014, 40(6): 80-84, 91. |
| CHANG Y, ZHANG Z H, SUN X X. Establishment of calibration device for active piston gel propellant flowmeter[J]. Journal of Rocket Propulsion, 2014, 40(6): 80-84, 91 (in Chinese). | |
| [45] | VON KAMPEN J, ALBERIO F, CIEZKI H K. Spray and combustion characteristics of aluminized gelled fuels with an impinging jet injector[J]. Aerospace Science and Technology, 2007, 11(1): 77-83. |
| [46] | JAYAPRAKASH N, CHAKRAVARTHY S R. Impingement atomization of gel fuels:AIAA-2003-0316[R]. Reston: AIAA, 2003. |
| [47] | 邓寒玉, 封锋. 射流自由长度对凝胶推进剂撞击雾化影响的实验[J]. 航空动力学报, 2018, 33(1): 215-222. |
| DENG H Y, FENG F. Experiment on effect of free jet length on impinging atomization of gel propellant[J]. Journal of Aerospace Power, 2018, 33(1): 215-222 (in Chinese). | |
| [48] | 邓寒玉, 封锋, 武晓松, 等. 射流偏心撞击对凝胶推进剂撞击雾化影响的实验研究[J]. 兵工学报, 2016, 37(4): 612-620. |
| DENG H Y, FENG F, WU X S, et al. Experimental research on the effect of eccentric impact of jet on the impinging atomization of gel propellant[J]. Acta Armamentarii, 2016, 37(4): 612-620 (in Chinese). | |
| [49] | DESYATKOV A, ADLER G, PROKOPOV O, et al. Atomization of gel fuels using impinging-jet atomizers[J]. International Journal of Energetic Materials and Chemical Propulsion, 2011, 10(1): 55-65. |
| [50] | CONNELL T L, RISHA G A, YETTER R A, et al. Hypergolic ignition of hydrogen peroxide/gel fuel impinging jets[J]. Journal of Propulsion and Power, 2017, 34(1): 182-188. |
| [51] | BAEK G, KIM S, HAN J, et al. Atomization characteristics of impinging jets of gel material containing nanoparticles[J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(21-22): 1272-1285. |
| [52] | NOH K, KIM H, KIM S, et al. Atomization characteristics of slurry fuels using a pressure swirl atomizer[J]. Journal of Non-Newtonian Fluid Mechanics, 2022, 304: 104794. |
| [53] | 杨立军, 刘陆昊, 富庆飞. 非牛顿流体射流雾化特性研究进展[J]. 航空学报, 2021, 42(12): 624974. |
| YANG L J, LIU L H, FU Q F. Research progress in atomization characteristics of non-Newtonian fluid jet[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 624974 (in Chinese). | |
| [54] | YANG L J, FU Q F, ZHANG W, et al. Atomization of gelled propellants from swirl injectors with leaf spring in swirl chamber[J]. Atomization and Sprays, 2011, 21(11): 949-969. |
| [55] | YANG L J, FU Q F, QU Y Y, et al. Spray characteristics of gelled propellants in swirl injectors[J]. Fuel, 2012, 97: 253-261. |
| [56] | KIM H, KO T, KIM S, et al. Spray characteristics of aluminized-gel fuels sprayed using pressure-swirl atomizer[J]. Journal of Non-Newtonian Fluid Mechanics, 2017, 249: 36-47. |
| [57] | HARRISON G M, MUN R, COOPER G, et al. A note on the effect of polymer rigidity and concentration on spray atomisation[J]. Journal of Non-Newtonian Fluid Mechanics, 1999, 85(1): 93-104. |
| [58] | FU Q F, GE F, WANG W D, et al. Spray characteristics of gel propellants in an open-end swirl injector[J]. Fuel, 2019, 254: 115555. |
| [59] | CHO J, LEE D, KANG T G, et al. Study on spray characteristics of simulant gel in pressure swirl injector[J]. International Journal of Aeronautical and Space Sciences, 2022, 23(4): 794-80. |
| [60] | GUAN H S, LI G X, ZHANG N Y. Experimental investigation of atomization characteristics of swirling spray by ADN gelled propellant[J]. Acta Astronautica, 2018, 144: 119-125. |
| [61] | QIAN L J, LIN J Z. Modeling on effervescent atomization: A review[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(12): 2109-2129. |
| [62] | KONSTANTINOV D, MARSH R, BOWEN P J, et al. Effervescent atomization for industrial energy-technology review[J]. Atomization and Sprays, 2010, 20(6): 525-552. |
| [63] | SOVANI S D, SOJKA P E, LEFEBVRE A H. Effervescent atomization[J]. Progress in Energy and Combustion Science, 2001, 27(4): 483-521. |
| [64] | OCHOWIAK M, BRONIARZ-PRESS L, ROZANSKI J. The discharge coefficient of effervescent atomizers[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1316-1323. |
| [65] | CZERNEK K, HYRYCZ M, KRUPIŃSKA A, et al. State-of-the-art review of effervescent-swirl atomizers[J]. Energies, 2021, 14(10): 2876. |
| [66] | MA X Y, DUAN Y F, LIU M. Atomization of petroleum-coke sludge slurry using effervescent atomizer[J]. Experimental Thermal and Fluid Science, 2013, 46: 131-138. |
| [67] | SOJKA P E, BUCKNER H N. Effervescent atomization of high-viscosity fluids: Part ⅱ. Non-newtonian liquids[J]. Atomization and Spray, 1993, 3(2): 157-170. |
| [68] | NIELSEN A F, POUL B, KRISTENSEN H G, et al. Investigation and comparison of performance of effervescent and standard pneumatic atomizer intended for soluble aqueous coating[J]. Pharmaceutical Development and Technology, 2006, 11(2): 243-253. |
| [69] | 刘联胜, 吴晋湘, 韩振兴, 等. 气泡雾化喷嘴在不同液体物性下的喷雾特性研究[J]. 热科学与技术, 2002, 1(2): 128-132. |
| LIU L S, WU J X, HAN Z X, et al. Studies of effervescent atomization at different physical properties of spray fluid[J]. Journal of Combustion Science and Technology, 2002, 1(2): 128-132 (in Chinese). | |
| [70] | 李龙飞, 张蒙正, 杨伟东, 等. 喷嘴形式对幂律型非牛顿推进剂雾化特性的影响[J]. 航空动力学报, 2014, 29(12): 2987-2992. |
| LI L F, ZHANG M Z, YANG W D, et al. Effects of different injectors on spray characteristics of power-law non-Newtonian propellant[J]. Journal of Aerospace Power, 2014, 29(12): 2987-2992 (in Chinese). | |
| [71] | QIAN L J, LIN J Z, XIONG H B. Modeling of non-Newtonian suspension plasma spraying in an inductively coupled plasma torch[J]. International Journal of Thermal Sciences, 2011, 50(8): 1417-1427. |
| [72] | LIU M, DUAN Y F, ZHANG T N, et al. Evaluation of unsteadiness in effervescent sprays by analysis of droplet arrival statistics: The influence of fluids properties and atomizer internal design[J]. Experimental Thermal and Fluid Science, 2011, 35(1): 190-198. |
| [73] | 刘猛, 段钰锋, 张铁男. 气泡雾化高黏度流体的实验研究[J]. 中国电机工程学报, 2011, 31(32): 82-87. |
| LIU M, DUAN Y F, ZHANG T N. Experimental research of effervescent atomization of high viscosity fluids[J]. Proceedings of the CSEE, 2011, 31(32): 82-87 (in Chinese). | |
| [74] | 刘猛, 段钰锋, 张铁男, 等. 液体性质对气泡雾化液滴不稳定性的影响[J]. 东南大学学报(自然科学版), 2012, 42(2): 295-300. |
| LIU M, DUAN Y F, ZHANG T N, et al. Influence of liquids properties on unsteadiness of droplet in effervescent sprays[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(2): 295-300 (in Chinese). | |
| [75] | BAKER T, NEGRI M, BERTOLA V. Atomization of high-viscosity and non-Newtonian fluids by premixing[J]. Atomization and Sprays, 2018, 28(5): 403-416. |
| [76] | OCHOWIAK M, KRUPIŃSKA A, WŁODARCZAK S, et al. The two-phase conical swirl atomizers: spray characteristics[J]. Energies, 2020, 13(13): 3416. |
| [77] | GHAFFAR Z A, KASOLANG S, HUSSEIN A H A, et al. Effect of geometrical parameters interaction on swirl effervescent atomizer spray angle[J]. Jurnal Teknologi, 2015, 76(9): 63-67. |
| [78] | CEJPEK O, MALY M, DHINASEKARAN V K, et al. Novel atomizer concept for CCS applications: Impinging effervescent atomizer[J]. Separation and Purification Technology, 2023, 311: 123259. |
| [79] | CIEZKI H, ROBERS A, SCHNEIDER G. Investigation of the spray behavior of gelled jet A-1 fuels using an air blast and an impinging jet atomizer: AIAA-2002-3601[R]. Reston: AIAA, 2002. |
| [80] | GREEN J, RAPP D, RONCACE J. Flow visualization of a rocket injector spray using gelled propellant simulants: AIAA-1991-2198[R]. Reston: AIAA, 1991. |
| [81] | SONG W, HWANG J, KOO J. Atomization of gelled kerosene by multi-hole pintle injector for rocket engines[J]. Fuel, 2021, 285: 119212. |
| [82] | RADHAKRISHNAN K, KOO J, HWANG Y. Volume of fluid simulation of sheet formation and primary breakup of non-Newtonian propellants in a pintle injector with variable injection areas[J]. Atomization and Sprays, 2020, 30(2): 75-95. |
| [83] | LEE I, KOO J. Break-up characteristics of gelled propellant simulants with various gelling agent contents[J]. Journal of Thermal Science, 2010, 19(6): 545-552. |
| [84] | RAHIMI S, NATAN B. Atomization characteristics of gel fuels: AIAA-1998-3830[R]. Reston: AIAA, 1998. |
| [85] | SHA R. Air-blast atomization of gel fuels: AIAA-2001-3276[R]. Reston: AIAA, 2001. |
| [86] | RAHIMI S, NATAN B. Atomization of gel propellants through an air-blast triplet atomizer[J]. Atomization and Sprays, 2006, 16(4): 379-400. |
| [87] | RAHIMI S, NATAN B. Numerical solution of the flow of power-law gel propellants in converging injectors[J]. Propellants, Explosives, Pyrotechnics, 2000, 25(4): 203-212. |
| [88] | CHERNOV V, NATAN B. Experimental characterization of a pulsatile injection gel spray: AIAA-2005-4479[R]. Reston: AIAA, 2005. |
| [89] | NATAN B, CHERNOV V. Effect of periodic disturbances on non-Newtonian fluid sprays[J]. Atomization and Sprays, 2008, 18(8): 723-738. |
| [90] | PADWAL M B, MISHRA D P. Characteristics of gelled Jet A1 sprays formed by internal impingement of micro air jets[J]. Fuel, 2016, 185: 599-611. |
| [91] | PANDIAN B, DAS R. Experimental investigation of crossflow air effect on spray characteristics of gelled Jet-A1 fuel using an internally impinging air-blast atomizer[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2023, 237(5): 1039-1052. |
| [92] | PANDIAN B, DAS R. Effect of atomizer and cross-flows on liquid and gelled Jet A-1 fuel injection[J]. International Journal of Engine Research, 2024, 25(1): 170-188. |
| [93] | 屈元元. 反压环境下喷注器雾化特性实验研究[D]. 北京: 北京航空航天大学, 2011. |
| QU Y Y. Experimental study of atomization characteristics under high ambient pressure[D]. Beijing: Beihang University, 2011 (in Chinese). | |
| [94] | URBON B C. Atomization and combustion of a gelled, metallized slurry fuel[D]. Monterey: Naval Postgraduate School, 1992. |
| [95] | 吴德志, 孙瑜, 王勇, 等. 凝胶推进剂模拟液静电雾化行为规律研究[J]. 火箭推进, 2018, 44(3): 54-61. |
| WU D Z, SUN Y, WANG Y, et al. Study on behavior rules of electrostatic atomization for gelled propellant simulant[J]. Journal of Rocket Propulsion, 2018, 44(3): 54-61 (in Chinese). | |
| [96] | 孙瑜. 凝胶推进剂静电雾化行为规律研究[D]. 厦门: 厦门大学, 2018. |
| SUN Y. Study on electrostatic atomization behavior of gel propellant[D]. Xiamen: Xiamen University, 2018 (in Chinese). | |
| [97] | GECKLER S C, SOJKA P E. Effervescent atomization of viscoelastic liquids: Experiment and modeling[J]. Journal of Fluids Engineering, 2008, 130(6): 061303. |
| [98] | ALISEDA A, HOPFINGER E J, LASHERAS J C, et al. Atomization of viscous and non-Newtonian liquids by a coaxial, high-speed gas jet. Experiments and droplet size modeling[J]. International Journal of Multiphase Flow, 2008, 34(2): 161-175. |
| [99] | JOHN D G. Atomization of JP-10/B4C gelled slurry fuel[D]. Monterey: Naval Postgraduate School, 1992. |
| [100] | PINNS M L, OLSON W T, BARNETT H C, et al. NACA research on slurry fuels: NACA-TR-1388 93R21657[R]. Cleveland: Lewis Flight Propulsion Laboratory, 1958. |
| [101] | BARTICK H A. Research on operational slurry fuels: AD392967[R]. Alexandria: Atlantic Research Corporation, 1968. |
| [102] | MACEK A, SEMPLE J M. Combustion of boron particles at atmospheric pressure[J]. Combustion Science and Technology, 1969, 1(3): 181-191. |
| [103] | MACEK A, SEMPLE J M. Combustion of boron particles at elevated pressures[J]. Symposium (International) on Combustion, 1971, 13(1): 859-868. |
| [104] | 刘建忠, 梁导伦, 周禹男, 等. 硼颗粒点火燃烧特性研究进展[J]. 固体火箭技术, 2017, 40(5): 573-582. |
| LIU J Z, LIANG D L, ZHOU Y N, et al. Review on ignition and combustion characteristics of boron particles[J]. Journal of Solid Rocket Technology, 2017, 40(5): 573-582 (in Chinese). | |
| [105] | AO W, ZHOU J H, LIU J Z, et al. Kinetic model of single boron particle ignition based upon both oxygen and (BO)n diffusion mechanism[J]. Combustion, Explosion, and Shock Waves, 2014, 50(3): 262-271. |
| [106] | LIANG D L, LIU J Z, LI H P, et al. Generation and evolution of surface oxide layer of amorphous boron during thermal oxidation: A micro/nanofabricated slice measurement[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(5): 532-540. |
| [107] | BYUN D Y, BAEK S W, CHO J H. Microexplosion of aluminum slurry droplets[J]. International Journal of Heat and Mass Transfer, 1999, 42(24): 4475-4486. |
| [108] | YANG D L, XIA Z X, HUANG L Y, et al. Exprimental study on the evaporation characteristics of the kerosene gel droplet[J]. Experimental Thermal and Fluid Science, 2018, 93: 171-177. |
| [109] | XIAO Y L, XIA Z X, HUANG L Y, et al. Numerical simulation of the flowfield in a boron-based slurry fuel ramjet[J]. Combustion, Explosion, and Shock Waves, 2019, 55(3): 361-371. |
| [110] | FU W B, HOU L Y, WANG L P, et al. A unified model for the micro-explosion of emulsified droplets of oil and water[J]. Fuel Processing Technology, 2002, 79(2): 107-119. |
| [111] | 段炼, 夏智勋, 陈斌斌, 等. 团聚硼在不同加热功率下的点火燃烧特性研究[C]∥第六届空天动力联合大会, 2022. |
| DUAN L, XIA Z X, CHEN B B, et al. Study on the ignition and combustion characteristics of agglomerated boron with different heating powers[C]∥6th China Joint Conference on Aerospace Propulsion, 2022 (in Chinese). | |
| [112] | 刘泽军. 凝胶推进剂液滴动力学及其燃烧微爆机理研究[D]. 长沙: 国防科技大学, 2013. |
| LIU Z J. Investigations on droplet dynamics and combustion microexplosion mechanism for gel propellants[D]. Changsha: National University of Defense Technology, 2013 (in Chinese). | |
| [113] | PADWAL M B, MISHRA D P. Experimental characterization of gelled jet A1 spray flames[J]. Flow, Turbulence and Combustion, 2016, 97(1): 295-337. |
| [114] | PADWAL M B, MISHRA D P. Advances in gel propellant combustion technology[M]∥Advances in Combustion Technology. Boca Raton: CRC Press, 2022: 209-227. |
| [115] | NATAN B, HADDAD A, ARIELI R. Performance assessments of a boron containing gel fuel ramjet: AIAA-2009-1421[R]. Reston: AIAA, 2009. |
| [116] | HADDAD A, NATAN B, ARIELI R. The performance of a boron-loaded gel-fuel ramjet[J]. Progress in Propulsion Physics, 2011, 2: 499-518. |
| [117] | 富庆飞, 杨立军, 贾伯琦. 一种用于冲压发动机含颗粒凝胶推进剂雾化的自激振荡喷嘴: CN110594041A[P]. 2019-12-20. |
| FU Q F, YANG L J, JIA B Q. A self-excited oscillating nozzle used in ramjet for atomization of particle-loaded gel propellant: CN110594041A[P]. 2019-12-20 (in Chinese). | |
| [118] | JIN Y S, DOU S Y, WANG X, et al. Effect of nano-sized aluminum additive on wall heat transfer characteristics of the liquid-fueled scramjet engine[J]. Applied Thermal Engineering, 2021, 197: 117387. |
| [1] | 罗飞腾, 渠镇铭, 李海涛, 李新珂, 姚达豪, 陈文娟, 龙垚松, 韦宝禧, 满延进, 杨甫江, 程强, 孔武斌. 高超声速进气道预喷注技术研究进展与关键问题[J]. 航空学报, 2025, 46(8): 631189-631189. |
| [2] | 朱家健, 罗天罡, 田轶夫, 万明罡, 孙明波. 多通道滑动弧等离子体与燃料喷注协同强化超燃冲压发动机点火方法[J]. 航空学报, 2025, 46(7): 131037-131037. |
| [3] | 李凡, 刘铭江, 孙明波, 赵国焱, 马光伟, 赵晨翔. 超燃冲压发动机中不同燃烧模态下乙烯燃烧释热的敏感因素[J]. 航空学报, 2025, 46(4): 130944-130944. |
| [4] | 乔竑玮, 梁剑寒, 张林, 孙明波, 陈玉俏. 超声速燃烧中的概率密度函数方法研究进展[J]. 航空学报, 2024, 45(8): 28802-028802. |
| [5] | 刘小勇, 王明福, 刘建文, 任鑫, 张轩. 超燃冲压发动机研究回顾与展望[J]. 航空学报, 2024, 45(5): 529878-529878. |
| [6] | 纪鉴恒, 蔡尊, 王泰宇, 孙明波, 王振国. 宽速域超燃冲压发动机流动燃烧过程研究进展[J]. 航空学报, 2024, 45(3): 28696-028696. |
| [7] | 赵子健, 刘朝阳, 黄伟. 支板/凹腔燃烧室混合与燃烧性能研究进展[J]. 航空学报, 2024, 45(16): 29765-029765. |
| [8] | 于江飞, 汤涛, 闫博, 汪洪波, 杨揖心, 熊大鹏, 孙明波. 马赫数6飞行条件圆截面超燃冲压发动机流动燃烧特征分析[J]. 航空学报, 2024, 45(14): 129575-129575. |
| [9] | 汤涛, 于江飞, 黄玉辉, 汪洪波, 孙明波, 赵国焱, 熊大鹏, 王振国. 圆截面超声速燃烧室乙烯燃料喷注火焰结构和模式分析[J]. 航空学报, 2024, 45(11): 528880-528880. |
| [10] | 吴忧, 陈兵, 杨庆春, 徐旭. 碳氢燃料超燃冲压发动机热非平衡效应[J]. 航空学报, 2024, 45(11): 529399-529399. |
| [11] | 陈军, 白菡尘, 万冰, 黎崎. 双模态冲压发动机:从宽域性能优化到模态设计[J]. 航空学报, 2024, 45(11): 529781-529781. |
| [12] | 赵翔, 夏智勋, 方传波, 马立坤, 李潮隆, 段一凡. 固体火箭超燃冲压发动机理论性能分析[J]. 航空学报, 2023, 44(5): 126971-126971. |
| [13] | 靳雨树, 徐旭, 杨庆春. 含能碳氢燃料燃烧特性及发动机应用研究进展[J]. 航空学报, 2023, 44(5): 26690-026690. |
| [14] | 宋家辉, 许爱国, 苗龙, 廖煜淦, 梁福文, 田丰, 聂明卿, 王宁飞. 激波/平板层流边界层干扰熵增特性[J]. 航空学报, 2023, 44(21): 528520-528520. |
| [15] | 夏智勋, 冯运超, 马立坤, 陈斌斌, 李潮隆, 杨鹏年, 刘延东, 屈影, 赵康淳, 赵李北, 任鹏浩. 固体火箭超燃冲压发动机燃烧技术研究进展[J]. 航空学报, 2023, 44(15): 528793-528793. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学

