收稿日期:
2023-10-27
修回日期:
2023-11-14
接受日期:
2024-01-14
出版日期:
2024-06-15
发布日期:
2024-02-23
通讯作者:
白菡尘
E-mail:sunguohaixuebao@163.com
基金资助:
Jun CHEN, Hanchen BAI(), Bing WAN, Qi LI
Received:
2023-10-27
Revised:
2023-11-14
Accepted:
2024-01-14
Online:
2024-06-15
Published:
2024-02-23
Contact:
Hanchen BAI
E-mail:sunguohaixuebao@163.com
Supported by:
摘要:
航班化航天运输系统的飞行包络宽、飞行任务复杂,要求其冲压发动机具有宽域、高效、推力可调节的运行能力,通过系统级性能优化实现宽域高性能,是双模态冲压发动机研究需要攻克的关键难题。本文回顾了双模态冲压发动机概念提出的背景与初衷、双模态运行机制认知以及双模态冲压发动机性能优化的探索历程,探讨了热力循环分析与宽域性能优化的关系,建议以实现飞行任务为目标,对双模态冲压发动机的运行模态进行设计,探索“基于设计”的宽域模态控制和受控模态转换技术。根据近年来发展的双模态冲压发动机等效热力过程理论,揭示了宽域性能优化若干条件,提出一个便于实现“受控模态转换”的多设计点固定几何燃烧室宽域运行方案设想。为实现宽域模态控制和受控模态转换技术,未来需建立两大能力,一是基于任务约束定量解决进发匹配以及飞发匹配矛盾、建立飞发一体化的“即时按需设计”能力,二是发展受控燃烧组织技术、建立燃烧系统“即时按需设计”的能力。
中图分类号:
陈军, 白菡尘, 万冰, 黎崎. 双模态冲压发动机:从宽域性能优化到模态设计[J]. 航空学报, 2024, 45(11): 529781-529781.
Jun CHEN, Hanchen BAI, Bing WAN, Qi LI. Dual-mode scramjet: From performance optimization to mode-design[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(11): 529781-529781.
1 | CHASE R, TANG M. The quest for single stage earth-to-orbit: TAV, NASP, DC-X and X-33 accomplishments, deficiencies, and why they did not fly: AIAA-2002-5143[R]. Reston: AIAA, 2002. |
2 | TANG M. Hypersonic - a periodic quest: AIAA-2005-3258[R]. Reston: AIAA, 2005. |
3 | FUCHS R P, CHAPUT A J, FROST D E, et al. Why and whither hypersonic research in the US Air Force[R]. Washington, D.C.: NASA, 2000. |
4 | HAMM D, BEST D. Hypersonic design: AIAA-1992-5077[R]. Reston: AIAA, 1992. |
5 | WEBER R J. Propulsion for hypersonic transport aircraft[R]. Washington, D.C.: NASA, 1964. |
6 | WALL D E. A study of hypersonic aircraft[R]. Washington, D.C.: NASA, 1964. |
7 | MCCLINTON C R, ANDREWS E H, HUNT J L. Engine development for space access: Past, present and future[C]∥15th International Symposium on Air Breathing Engines. Reston: AIAA, 2001. |
8 | EDUCATIONAL NOTES RTO. High speed propulsion: Engine design - integration and thermal management[C]∥The AVT-185 RTO AVT/VKI Lecture Series. Genèse: RTO/NATO, 2010. |
9 | HUNT J L, GERARD L, WAGNER A. System challenges for hypersonic vehicles[R]. Washington, D.C.: NASA, 1997. |
10 | SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28. |
11 | RICHMOND J. Optimizing trajectories for unpowered hypersonic waveriders during atmospheric reentry: AIAA-2022-2608[R]. Reston: AIAA, 2022. |
12 | LIVINGSTON J. The case against horizontal takeoff launch vehicles: AIAA-2008-2640[R]. Reston: AIAA, 2008. |
13 | 张蒙正, 张玫. 航天运载器重复使用液体动力若干问题探讨[J]. 火箭推进, 2019, 45(4): 9-15. |
ZHANG M Z, ZHANG M. Discussion on some problems of reusable liquid-propellant engine[J]. Journal of Rocket Propulsion, 2019, 45(4): 9-15 (in Chinese). | |
14 | WEINGERTNER S. Sanger - the reference concept of the German hypersonic technology program: AIAA-00 93-5161[R]. Reston: AIAA, 1993. |
15 | FRY R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1): 27-58. |
16 | DULEPOV N, LANSHIN A, SOKOLOVA O, et al. Propulsion systems for TSTO airplane-accelerators of different types: AIAA-2001-1914[R]. Reston: AIAA, 2001. |
17 | WILLIAM J D. A study of composite propulsion systems for advanced launch vehicle applications: 25194(Vol.1)[R]. California: Marquardt Corporation, 1966. |
18 | ERDOS J I, NUCCI L M. Pioneering scramjet developments by Antonio Ferri: N92-21519[R]. Washington, D.C.: NASA, 1992. |
19 | CURRAN E T, STULL F D. The utilization of supersonic combustion ramjet systems at low Mach number: RTD-TDR-63-4097[R]. Bolling AFB, DC: AFRL, 1964. |
20 | BOUCHEZ M. Structural design of dual-mode ramjets and associated system issues[C]∥The AVT-185 RTO AVT/VKI Lecture Series. Genèse: RTO/NATO, 2010. |
21 | SELEZNEV R K, SURZHIKOV S T, SHANG J S. A review of the scramjet experimental data base[J]. Progress in Aerospace Sciences, 2019, 106: 43-70. |
22 | URZAY J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics, 2018, 50: 593-627. |
23 | LIU Q L, BACCARELLA D, LEE T H. Review of combustion stabilization for hypersonic airbreathing propulsion[J]. Progress in Aerospace Sciences, 2020, 119: 100636. |
24 | LUO S B, XU D Q, SONG J W, et al. A review of regenerative cooling technologies for scramjets[J]. Applied Thermal Engineering, 2021, 190: 116754. |
25 | SULLINS G A. Demonstration of mode transition in a scramjet combustor[J]. Journal of Propulsion and Power, 1993, 9(4): 515-520. |
26 | VOLAND R, ROCK K. NASP concept demonstration engine and subscale parametric engine tests: AIAA-1995-6055[R]. Reston: AIAA, 1995. |
27 | ANDREADIS D. Scramjet engines enabling the seamless integration of air & space operations[J]. The Industrial Physicist, 2004: 8~9. |
28 | YU D R, CUI T, BAO W. Catastrophe, hysteresis and bifurcation of mode transition in scramjet engines and its model[J]. Science in China Series E: Technological Sciences, 2009, 52(6): 1543-1550. |
29 | BAO W, YANG Q C, CHANG J T, et al. Experimental study on dynamic characteristics of combustion mode transition: AIAA-2013-3973[R]. Reston: AIAA, 2013. |
30 | 李飞, 王知溥, 余西龙, 等. 双模态发动机的模态鉴别方法[J]. 力学学报, 2015, 47(3): 389-397. |
LI F, WANG Z P, YU X L, et al. Experimental study on judgment method of combustion mode on dual-mode scramjet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 389-397 (in Chinese). | |
31 | 肖保国, 李莉, 张顺平, 等. 超燃冲压发动机燃烧模态转换直连式实验研究[J]. 推进技术, 2019, 40(2): 339-346. |
XIAO B G, LI L, ZHANG S P, et al. Direct-connect experimental investigation of combustion mode transition for scramjet engine[J]. Journal of Propulsion Technology, 2019, 40(2): 339-346 (in Chinese). | |
32 | 连欢, 顾洪斌, 周芮旭, 等. 超燃冲压发动机模态转换及推力突变实验研究[J]. 实验流体力学, 2021, 35(1): 97-108. |
LIAN H, GU H B, ZHOU R X, et al. Investigation of mode transition and thrust performance in transient acceleration and deceleration experiments[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 97-108 (in Chinese). | |
33 | LIU Q L, BACCARELLA D, MCGANN B, et al. Dual-mode operation and transition in axisymmetric scramjets[J]. AIAA Journal, 2019, 57(11): 4764-4777. |
34 | CURRAN D, WHEATLEY V, SMART M. Investigation of combustion mode control in a Mach 8 shape-transitioning scramjet[J]. AIAA Journal, 2019, 57(7): 2977-2988. |
35 | HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Reston: AIAA, 1994. |
36 | CURRAN E T. Scramjet engines: The first forty years[J]. Journal of Propulsion and Power, 2001, 17(6): 1138-1148. |
37 | CURRAN E T, MURTHY S N B. Scramjet propulsion[M]. Reston: AIAA, 2001. |
38 | RAMUNNO M A, BOYD I M, GRANDHI R V, et al. Integrated hypersonic aeropropulsion model for multidisciplinary vehicle analysis and optimization[J]. Journal of Propulsion and Power, 2022, 38(3): 478-488. |
39 | MATTINGLY J D, HEISER W H, PRATT D T. Aircraft engine design, second edition[M]. Reston: AIAA, 2002. |
40 | 郭楚微, 孙宗祥, 罗月培, 等. 美国“降阶” 发展高超声速飞机[J]. 空天技术, 2022(5): 89-96. |
GUO C W, SUN Z X, LUO Y P, et al. U.S. “Degraded” development of hypersonic aircraft[J]. Aerospace Technology, 2022(5): 89-96 (in Chinese). | |
41 | 陈晓清. 美军高超声速飞机组合动力技术进展分析[J]. 飞航导弹, 2021(5): 17-20, 25. |
CHEN X Q. Progress analysis of combined power technology of hypersonic aircraft in US military[J]. Aerodynamic Missile Journal, 2021(5): 17-20, 25 (in Chinese). | |
42 | SEGAL C. Propulsion systems for hypersonic flight[C]∥The AVT-116 RTO AVT/VKI Lecture Series. Genèse: RTO/NATO, 2004. |
43 | МАКСИМОВ А И. Восхождение к Звездам:Краткая История Развития Ракетной и Космонавтики[M]. Новосибирск: Издательство СО РАН, 2012. |
44 | СТЕЧКИН Б С. Теория воздушного реакдивного двигателя[J]. Техника воздушного флона, 1929(2): 7-16. |
45 | POBEDONOSTSEV Y A. The first flight tests of ramjet engines: AD-732275 (FTD-RC-23-735-71) [R]. Ohio: Wright-Patterson AFB, 1971. |
46 | WALTRUP P J, WHITE M E, ZARLINGO F, et al. History of U.S. navy ramjet, scramjet, and mixed-cycle propulsion development[J]. Journal of Propulsion and Power, 2002, 18(1): 14-27. |
47 | 蓬达留克, 伊里雅申柯. 冲压式喷气发动机[M]. 宁榥, 张斌全, 译. 北京: 国防工业出版社, 1958. |
БОНДАРЮК М М, ИЛЬЯЩЕНКО С М. Ramjet Engine[M]. NING H, ZHANG B Q, translated. Beijing: National Defense Industry Press, 1958 (in Chinese). | |
48 | OSWATITSCH K. Pressure recovery for missiles with reaction propulsion at high supersonic speeds (the efficiency of shock diffusers)[R]. Washington, D.C.: NACA, 1980. |
49 | ROY M. Thermodynamique des systemees propulsifs a reaction[M]. Paris: Dunod Editeur, 1947. |
50 | WEBER R J, MACKAY J S. An analysis of ramjet engines using supersonic combustion[R]. Washington, D.C.: NACA, 1958. |
51 | SWITHENBANK J. Hypersonic air-breathing propulsion[J]. Progress in Aerospace Sciences, 1967, 8: 229-294. |
52 | FERRI A. Future research in air breathing engines[C]∥Fourth AGARD Colloquium. Milan: Pergamon Press, 1961. |
53 | DUGGER G L. Comparison of hypersonic ramjet engines with subsonic and supersonic combustion[C]∥Fourth AGARD Colloquium. Milan: Pergamon Press, 1961. |
54 | BILLIG F S. Research on supersonic combustion[J]. Journal of Propulsion and Power, 1993, 9(4): 499-514. |
55 | ROY P M. Propulsion supersonique par turboréacteurs et par statoréacteurs[M]∥Advances in Aeronautical Sciences. Amsterdam: Elsevier, 1959. |
56 | FERRI A. Review of scramjet propulsion technology[J]. Journal of Aircraft, 1968, 5(1): 3-10. |
57 | MERLIN P. Design and development of the blackbird: Challenges and lessons learned: AIAA-2009-1522[R]. Reston: AIAA, 2009. |
58 | FALEMPIN F H. Scramjet development in France[M]. CURRAN E T, MURTHY S N B. Scramjet Propulsion. Reston: AIAA, 2001. |
59 | BILLIG F S, ORTH R C, LASKY M. Effects of thermal compression on the performance estimates of hypersonic ramjets[J]. Journal of Spacecraft and Rockets, 1968, 5(9): 1076-1081. |
60 | Advanced Engine and Technology Department of GE. Technical proposal for conceptual and preliminary design of a hypersonic ramjet research engine(Vol.1):NASA-CR-146992[R]. Washington, D.C.: NASA, 1965. |
61 | BILLIG F S, WALTRUP P J, STOCKBRIDGE R D. Integral-rocket dual-combustion ramjets: A new propulsion concept[J]. Journal of Spacecraft and Rockets, 1980, 17(5): 416-424. |
62 | BILLIG F. SCRAM - A supersonic combustion ramjet missile: AIAA-1993-2329[R]. Reston: AIAA, 1993. |
63 | WALTRUP P J. Hypersonic air-breathing missile propulsion[C]∥AGARD Symposium. London: Technical Editing and Reproduction Ltd, 1997. |
64 | BILLIG F S, DUGGER G L. The interaction of shock waves and heat addition in the design of supersonic combustors[J]. Symposium (International) on Combustion, 1969, 12(1): 1125-1139. |
65 | WALTRUP P, BILLIG F. Precombustion shock structure in scramjet engines: AIAA-1972-1181[R]. Reston: AIAA, 1972. |
66 | BILLIG F S, DUGGER G L, WALTRUP P J. Inlet-combustor interface problems in scramjet engines[C]∥The First International Symposium on Air Breathing Propulsion. Reston: AIAA, 1972. |
67 | WALTRUP P J, BILLIG F S. Structure of shock waves in cylindrical ducts[J]. AIAA Journal, 1973, 11(10): 1404-1408. |
68 | WALTRUP P J, BILLIG F S. Prediction of precombustion wall pressure distributions in scramjet engines[J]. Journal of Spacecraft and Rockets, 1973, 10(9): 620-622. |
69 | WALTRUP P J, BILLIG F S, STOCKBRIDGE R D. A procedure for optimizing the design of scramjet engines[J]. Journal of Spacecraft and Rockets, 1979, 16(3): 163-171. |
70 | WALTRUP P J, BILLIG F S, EVANS M C. Critical considerations in the design of supersonic combustion ramjet/scramjet/engines[J]. Journal of Spacecraft and Rockets, 1981, 18(4): 350-356. |
71 | MATSUO K, MIYAZATO Y, KIM H D. Shock train and pseudo-shock phenomena in internal gas flows[J]. Progress in Aerospace Sciences, 1999, 35(1): 33-100. |
72 | GRUBER M, SMITH S, MATHUR T. Experimental characterization of hydrocarbon-fueled, axisymmetric, scramjet combustor flowpaths: AIAA-2011-2311[R]. Reston: AIAA, 2011. |
73 | 黄河峡, 谭慧俊, 庄逸, 等. 高超声速进气道/隔离段内流特性研究进展[J]. 推进技术, 2018, 39(10): 2252-2273. |
HUANG H X, TAN H J, ZHUANG Y, et al. Progress in internal flow characteristics of hypersonic inlet/isolator[J]. Journal of Propulsion Technology, 2018, 39(10): 2252-2273 (in Chinese). | |
74 | CROCCO L. One-dimensional treatment of steady gas dynamics[M]. Princeton: Princeton University Press, 1958. |
75 | IKUI T, MATSUO K, NAGAI M. The mechanism of pseudo-shock waves[J]. Bulletin of JSME, 1974, 17(108): 731-739. |
76 | IKUI T, MATSUO K, SASAGUCHI K. Modified diffusion model of pseudo-shock waves considering upstream boundary layers[J]. JSME International Journal Series B, 1981, 24: 1920-1927. |
77 | 陈军. Ma4~7双模态冲压发动机燃烧室热力工作过程与性能潜力研究[D]. 绵阳: 中国空气动力研究与发展中心, 2016. |
CHEN J. The relationship between thermal process and potential performance in dual-mode scramjet at Ma4-7[D]. Mianyang: China Aerodynamics Research and Development Center, 2016 (in Chinese). | |
78 | BUILDER C. On the thermodynamic spectrum of airbreathing propulsion: AIAA-1964-0243[R]. Reston: AIAA, 1964. |
79 | SULLINS G A, WALTRUP P J. A comparison of scramjet integral analysis techniques[J]. Journal of Propulsion and Power, 1985, 1(2): 156-158. |
80 | 朱也夫B С, 马卡伦В С. 冲压和火箭冲压发动机原理[M]. 刘兴洲, 译. 北京: 国防工业出版社, 1975. |
ЗУЕВ В С, МАКАРОН В С. Теория примоточных и ракетно-прямоточных двигателей[M]. LIU X Z, translated. Beijing: National Defense Industry Press, 1975 (in Chinese). | |
81 | ROBERTS K, WILSON D. Analysis and design of a hypersonic scramjet engine with a transition Mach number of 4.00: AIAA-2009-1255[R]. Reston: AIAA, 2009. |
82 | BILLIG F S. Combustion processes in supersonic flow[J]. Journal of Propulsion and Power, 1988, 4(3): 209-216. |
83 | WALTRUP P J. Liquid-fueled supersonic combustion ramjets: A research perspective[J]. Journal of Propulsion and Power, 1987, 3(6): 515-524. |
84 | BILLIG F S, SULLINS G A. Optimization of combustor-isolator in dual-mode ram scramjets: AIAA-1993-5154[R]. Reston: AIAA, 1993. |
85 | 何国强, 秦飞. 火箭基组合循环发动机[M]. 北京: 国防工业出版社, 2019. |
HE G Q, QIN F. Rocket based combined cycle[M]. Beijing: National Defense Industry Press, 2019 (in Chinese). | |
86 | HUNT J L, MCCHTON C R. Scramjet engine/airframe integration methodology[C]∥AGARD Conference. London: Technical Editing and Reproduction Ltd, 1997. |
87 | FOTIA M L, DRISCOLL J F. Ram-scram transition and flame/shock-train interactions in a model scramjet experiment[J]. Journal of Propulsion and Power, 2013, 29(1): 261-273. |
88 | KANDA T, CHINZEI N, KUDO K, et al. Dual-mode operation in a scramjet combustor: AIAA-2001-1816[R]. Reston: AIAA, 2001. |
89 | 王振锋, 白菡尘, 刘初平. 燃烧效率一维评价的影响因素研究[J]. 实验流体力学, 2008, 22(1): 11-16. |
WANG Z F, BAI H C, LIU C P. A study of the influence of several factors on one-dimensional method for ramcombustor combustion efficiency estimation[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1): 11-16 (in Chinese). | |
90 | 白菡尘, 陈军. 双模态冲压发动机等效热力过程与性能关系原理[M]. 北京: 国防工业出版社, 2018. |
BAI H C, CHEN J. Connection principle between dual-mode scramjet performance and equivalent thermal-dynamic process[M]. Beijing: National Defense Industry Press, 2018 (in Chinese). | |
91 | 朱克罗, 霍夫曼. 气体动力学[M]. 王汝涌, 吴宗真, 吴宗善, 等,译. 北京: 国防工业出版社, 1984. |
ZUCROW M J, HOFFMAN J D. Gas dynamics[M]. WANG R Y, WU Z Z, WU Z S, et al, translated. Beijing: National Defense Industry Press, 1984 (in Chinese). | |
92 | FAULKNER R F. Integrated system test of an air-breathing rocket (ISTAR): AIAA-2001-1812[R]. Reston: AIAA, 2001. |
93 | DEBONIS J, TREFNY C, STEFFEN C. Inlet development for a rocket based combined cycle, single stage to orbit vehicle using computational fluid dynamics: AIAA-1999-2239[R]. Reston: AIAA, 1999. |
94 | 万冰, 陈军, 白菡尘, 等 .基于等效热力过程的宽域冲压全流道性能设计方法[J]. 航空学报, 2024, 45(4): 157-170. |
WAN B, CHEN J, BAI H C, et al. Full flow path performance design method for wide range scramjet based on equivalent thermodynamic process [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 157-170 (in Chinese). | |
95 | THOMAS S R, PALAC D T, TREFNY C J, et al. Performance evaluation of the NASA GTX RBCC flowpath[C]∥15th International Symposium on Air Breathing Engines. Reston: AIAA, 2001. |
96 | 陈军, 白菡尘, 万冰. 基于热力循环分析的双模态冲压发动机进发匹配探讨[C]∥第六届空天动力联合会议暨中国航天第三专业信息网第四十二届技术交流会, 2022. |
CHEN J, BAI H C, WAN B. Disscussion on inlet and engine matching of dual-mode ramjet engine based on the thermodynamic cycle analysing[C]∥6th China Joint Conference on Aerospace Propulsion, 2022 (in Chinese). | |
97 | 黎崎. 二元高超进气道入口段设计参数与气动喉道特征关系研究[D]. 绵阳: 中国空气动力研究与发展中心, 2017. |
LI Q. Effect of entrance section design parameters on aero-throat in a 2D hypersonic inlet[D]. Mianyang: China Aerodynamics Research and Development Center, 2017 (in Chinese). |
[1] | 刘卫东, 彭皓阳, 刘世杰, 张海龙, 袁雪强. 旋转爆震燃烧及应用研究进展[J]. 航空学报, 2023, 44(15): 528875-528875. |
[2] | 张宇杭, 韩东, 万浩云. 桨叶分段线性扭转对旋翼性能的提升[J]. 航空学报, 2022, 43(5): 225264-225264. |
[3] | 吴文海, 高阳, 王子健, 周思羽. 基于LADRC的舰载V/STOL飞机短距起飞性能优化[J]. 航空学报, 2019, 40(6): 122772-122772. |
[4] | 宗兆科;苏华. 圆弧型指尖密封的几何构型特征及结构优化[J]. 航空学报, 2010, 31(2): 393-399. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学