收稿日期:
2021-11-24
修回日期:
2021-12-10
接受日期:
2022-03-23
出版日期:
2023-03-15
发布日期:
2022-03-30
通讯作者:
杨庆春
E-mail:yangqc@buaa.edu.cn
基金资助:
Yushu JIN1,2, Xu XU1, Qingchun YANG1()
Received:
2021-11-24
Revised:
2021-12-10
Accepted:
2022-03-23
Online:
2023-03-15
Published:
2022-03-30
Contact:
Qingchun YANG
E-mail:yangqc@buaa.edu.cn
Supported by:
摘要:
在液体碳氢燃料中添加铝、硼等高能固体颗粒是提高燃料能量特性的有效手段,也是未来高性能火箭发动机和冲压发动机性能提升的重要基础。对含能碳氢燃料的发展历程和当前需求进行介绍,重点分析对比了含能碳氢燃料的2种类型及各自优势;综述了国内外开展的含能碳氢燃料单液滴燃烧实验研究,介绍了含能碳氢燃料液滴的特征燃烧过程和典型燃烧现象;总结了国内外研究机构在火箭发动机、亚燃冲压发动机和超燃冲压发动机平台中开展的含能碳氢燃料应用研究进展。最后,对含能碳氢燃料的下一步研究进行展望。
中图分类号:
靳雨树, 徐旭, 杨庆春. 含能碳氢燃料燃烧特性及发动机应用研究进展[J]. 航空学报, 2023, 44(5): 26690-026690.
Yushu JIN, Xu XU, Qingchun YANG. Research progress in combustion characteristics and engine applications of energetic hydrocarbon fuels[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 26690-026690.
表 2
含微米铝/硼颗粒碳氢燃料的单液滴燃烧实验
文献 | 液滴成分 | 液滴直径 | 实验环境 | 主要研究结论 |
---|---|---|---|---|
Wong和Turns[ | JP-10+42.6%Al JP-10+42.6%Al +Surfactants Al: 4 μm | 0.5~1.1 mm | 火焰,1 bar,1 250~1 800 K | ① 含铝浆体液滴燃烧时存在“爆裂”现象,燃尽时间缩短;② 加入尺寸较小的碳颗粒会导致团聚体表面孔隙度变化。 |
Wong和Turns[ | JP-10+66%(Al+C)+Surfactants Al: 4 μm,C: 0.35 μm | 0.5~1.0 mm, 200~450 μm | 火焰,1 bar,1 616~2 003 K | 影响爆裂的因素:液滴外部硬质壳体的孔隙度和塑性。 |
Mueller和Turns[ | RP-1 +60%Al Al: 微米级 | 20~100 μm | 火焰,1 bar,2 650 K | ① 爆裂产生的原因:不渗透壳体形成后内部压力持续升高;② 建立不渗透壳体压力累计模型,理论与实验结果一致。 |
Antaki和Williams[ | JP-10+(0%~70%)B+2%Surfactants B: 2 μm | 1.2~3.0 mm | 空气,1 bar,300 K | ① 含微米硼JP-10浆体燃料燃烧过程中硼颗粒未参与燃烧;② 硼颗粒质量分数对浆体燃料液滴的燃烧现象影响显著。 |
Takahashi et al.[ | JP-10+(0%~30%)B+2%Surfactants B:微米级 | 0.3~0.5 mm | 火焰,1 bar,2 054~2 086 K | ① 含硼浆体燃料液滴燃烧时存在“爆裂/微爆”现象;② 硼质量分数越高、火焰氧气摩尔分数越高,爆裂出现越早。 |
Takahashi et al.[ | JP-10+10%/30% B+Surfactants 无定型硼:0.88 μm 晶体硼:6.7 μm | <450 μm | 火焰,1 bar,1 900 K, 氧气浓度:0.39 | 爆裂机制:硼颗粒在液滴表面张力和液滴蒸发的作用下在表面形成多孔壳体,添加剂的热分解产物与壳体相互作用形成不渗透壳体,持续加热使液滴内部压力持续升高,导致爆裂。 |
表 3
含纳米铝/硼颗粒碳氢燃料的单液滴燃烧实验研究
文献 | 液滴成分 | 单液滴直径或质量 | 实验环境 | 主要研究结论 |
---|---|---|---|---|
Tyagi et al.[ | Diesel +50 nm Al Al: 15 nm/50 nm | 25.3±1.5 mg | 空气 1 bar,688~768 ℃ | ① 添加纳米铝颗粒有利于柴油的点火成功率;② 纳米颗粒会提升燃料的辐射和传热特性,在更低温度着火。 |
Gan和Qiao[ | C10H22/C2H6O +10%Al+ Surfactants Al: 80 nm/5 μm | 0.5~2.5 mm | 空气1 bar,300 K | ① 含纳米铝浆体燃料燃烧时存在爆裂现象;② 颗粒尺寸差异导致浆体液滴燃烧时壳体表面特性不同。 |
Gan et al.[ | C10H22 +5%B +Surfactants C2H6O +5%/1%B B: 80 nm | 0.5~2.5 mm | 空气 1 bar,300 K | ① 含纳米硼浆体燃料燃烧时存在爆裂现象;② 含硼浆体燃料液滴爆裂是因为燃料各组分的沸点不同。 |
Tanvir和Qiao[ | C2H6O +(0%~50%) Al Al: 80 nm | 0.1~0.5 mm | 空气 1 bar,300 K | ① 浆体燃料液滴尺寸较小时,铝颗粒燃烧较完全;② 添加纳米铝提升液滴热传导特性,提高液滴燃烧速率。 |
Javed et al.[ | C7H16+ (0.5%~5.0%) Al+ Surfactants Kerosene+(0.1%~1.0%) Al+ Surfactants Al: 70 nm | 1.0±0.1 mm | 空气 1 bar,600~850 ℃ | ① 含铝浆体液滴燃烧偏离经典的d2定律,经历频繁的微爆;② 微爆导致液滴燃烧时间明显缩短。 |
杨大力等[ | 煤油+(2%~10%) B+(2%~10%)凝胶剂 B: 微米级 | 1.0~1.2 mm | 空气 1 bar,300 K | ① 硼颗粒的加入会使凝胶液滴的微爆现象加剧;②凝胶剂越多,凝胶液滴稳定燃烧时间越久,微爆程度加剧;③ 硼含量越多,凝胶液滴稳定燃烧时间缩短,微爆程度加剧。 |
表 4
含铝/硼颗粒碳氢燃料在火箭发动机中的燃烧试验
文献 | 发动机及工质 | 燃料组成 | 工作参数 | 主要研究结论 |
---|---|---|---|---|
Mordosky et al.[ | 火箭发动机 O2/凝胶燃料 | RP-1+ a%Al +Gellant, a=0, 5, 10, 30, 55 Al: 100 nm | 室压1.0~2.8 MPa 氧燃比0.5~5.0 | ① 相比纯凝胶燃料,RP-1+5%Al凝胶燃料燃烧效率提高6%,其余3组含铝凝胶燃料燃烧效率持平;② 含纳米铝凝胶燃料燃烧效率高于含微米铝凝胶燃料。 |
Ellison et al.[ | 火箭发动机 O2/凝胶燃料 | Gelled RP-1+16%Al Al: 纳米级 | 室压1.2~1.6 MPa 氧燃比0.56~1.56 | 含铝凝胶燃料燃烧效率为72%~97%。 |
Luo et al.[ | 火箭发动机 O2/浆体燃料 | JP-10+16%Al+ Surfactants Al: 40 nm | 室压2.8~3.0 MPa 氧燃比1.7~1.9 | ① 添加纳米铝使JP-10燃料燃烧效率提高约3%~9%;② 产物分析表明燃烧产物中存在大尺寸铝颗粒团聚体,80%的团聚体尺寸在100~300 nm范围。 |
邵昂等[ | 火箭发动机 O2/浆体燃料 | JP-10+21%Al+ Surfactants Al: 100 nm | 室压2.0~2.5 MPa 氧燃比1.6~2.0 | ① 高氧燃比时浆体燃料燃烧效率高于纯液体燃料;② 添加纳米铝颗粒使燃料密度比冲提高5.5%~14.6%;③ 浆体燃料燃烧产物中铝颗粒氧化率约74.1%。 |
刘毅等[ | 火箭发动机 O2/浆体燃料 | QC+15%Al+ Surfactants Al: 100 nm | 室压2.5~2.8 MPa 氧燃比1.6~2.0 | ① QC+15%Al浆体燃料的燃烧效率稍低于QC纯净燃料;② 浆体燃料的密度比冲相比纯液体燃料提高约3%;③ 喷管出口沉积物包含碳、铝和氧化铝,铝氧化率约91%。 |
靳雨树[ | 火箭发动机 O2/浆体燃料 | HD-01+10% 100 nm Al HD-01+10% 20 nm B QC+10% 20 nm B QC+20% 20 nm B | 室压1.9~2.2 MPa 余氧系数0.6~0.8 | ① 添加纳米颗粒可导致燃烧效率下降,密度比冲提升;② 添加纳米铝颗粒的综合效果优于纳米硼颗粒;③ 提高纳米颗粒含量可进一步提升发动机密度比冲性能,但会带来更严重的固相沉积问题。 |
表 5
含铝/硼颗粒碳氢燃料在冲压发动机中的燃烧试验
文献 | 发动机及工质 | 燃料组成 | 工作参数 | 主要研究结论 |
---|---|---|---|---|
Von Kampen et al.[ | 圆筒燃烧器 Air/凝胶燃料 | Jet-Al+7.5%Gellant+7.5%MIAK+35%Al Al: 10 μm | 室压0.6~1.1 MPa 加热器温度300、 550、 800 K空燃比>0.75 | 燃烧温度提高,环境压力提高,均可使凝胶燃料燃烧效率提高。 |
Negri和Ciezki[ | 圆筒燃烧器 Air/凝胶燃料 | Jet-Al+7.5%Gellant+(30-x)%微米Al+x%纳米Al,x=0, 15, 30 Al: 160 nm, 0.78 μm | 室压0.86~0.96 MPa 加热器温度400 ℃ 当量比0.75 | ① 含纳米铝浆体燃料的燃烧效率低于含微米铝浆体燃料的燃烧效率;② 3种燃料中铝的氧化率为30%~50%,扫描电镜图片显示纳米铝出现明显团聚,团聚体直径约200 μm。 |
Gafni et al.[ | 亚燃冲压发动机 Air/凝胶燃料 | 煤油+5.6%/10.6%Ni-Al +Gellant 煤油+4.8%/23%Al +Paraffin Ni-Al: 22 μm, Al: 22 μm | 室压0.5~1.6 MPa 加热器温度700~1 200 K 当量比0.4~1.6 | ① 添加微米级活性铝和镍包覆铝均导致凝胶燃料燃烧效率下降,发动机质量比冲损失;② 含能凝胶燃料的高密度特性未能使其对应的密度比冲提升,铝颗粒含量较高时甚至出现损失。 |
Xiao et al.[ | 亚燃冲压发动机 Air/凝胶燃料 | Jet-Al+3% Gellant +x%B, x=30,40 B: 微米级 | 来流空气马赫数为3 加热器温度625 K | ① 硼颗粒质量分数提高,燃烧效率下降;② 燃烧室长度减小,燃烧效率下降。 |
Jin et al.[ | 超燃冲压发动机 Air/浆体燃料 | JP-10+16%Al+ Surfactant Al: 80 nm | 入口马赫数为2 入口总温1 700 K 当量比0.56、 0.73、 0.91 | ① 自激振荡喷注器实现高黏度浆体燃料稳定喷注和高效雾化;② 相比JP-10燃料,JP-10+Al浆体燃料的燃烧效率和密度比冲明显提高;③ 加入纳米铝导致燃烧室壁面热流提高32%,这是强对流、高总温、额外沉积热共同导致的。 |
1 | ZHANG X W, PAN L, WANG L, et al. Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids[J]. Chemical Engineering Science, 2018, 180: 95-125. |
2 | 邹吉军, 郭成, 张香文, 等. 航天推进用高密度液体碳氢燃料: 合成与应用[J]. 推进技术, 2014, 35(10): 1419-1425. |
ZOU J J, GUO C, ZHANG X W, et al. High-density liquid hydrocarbon fuels for aerospace propulsion: Synthesis and application[J]. Journal of Propulsion Technology, 2014, 35(10): 1419-1425 (in Chinese). | |
3 | ROY G D. Utilization of high-density strained hydrocarbon fuels for propulsion[J]. Journal of Propulsion and Power, 2000, 16(4): 546-551. |
4 | KOKAN T S, OLDS J R, SEITZMAN J M, et al. Characterizing high-energy-density propellants for space propulsion applications[J]. Acta Astronautica, 2009, 65(7-8): 967-986. |
5 | KOKAN T, OLDS J. An experimental and analytical study of high-energy-density propellants for liquid rocket engines[C]∥ 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2005. |
6 | 邹吉军, 张香文, 王莅, 等. 高密度烃燃料合成进展[J]. 化学推进剂与高分子材料, 2008, 6(1): 26-30. |
ZOU J J, ZHANG X W, WANG L, et al. Synthesis advance of high-density hydrocarbon fuels[J]. Chemical Propellants & Polymeric Materials, 2008, 6(1): 26-30 (in Chinese). | |
7 | WOHLWEND K, MAURICE L Q, EDWARDS T, et al. Thermal stability of energetic hydrocarbon fuels for use in combined cycle engines[J]. Journal of Propulsion and Power, 2001, 17(6): 1258-1262. |
8 | 潘伦, 鄂秀天凤, 邹吉军, 等. 四环庚烷的制备及自燃性[J]. 含能材料, 2015, 23(10): 959-963. |
PAN L, E X T F, ZOU J J, et al. Study on synthesis of quadricyclane and its hypergolic property[J]. Chinese Journal of Energetic Materials, 2015, 23(10): 959-963 (in Chinese). | |
9 | 王文涛, 丛昱, 王晓东, 等. 四环庚烷的合成[J]. 含能材料, 2014, 22(2): 141-143. |
WANG W T, CONG Y, WANG X D, et al. Synthesis of quadricyclane[J]. Chinese Journal of Energetic Materials, 2014, 22(2): 141-143 (in Chinese). | |
10 | 李艳玲, 冀克俭, 赵晓刚, 等. 高张力笼状化合物四环庚烷的分子结构表征及热裂解[J]. 含能材料, 2017, 25(8): 622-626. |
LI Y L, JI K J, ZHAO X G, et al. Molecular structure characterization and pyrolysis of high strain and caged structure compound-quadricyclane[J]. Chinese Journal of Energetic Materials, 2017, 25(8): 622-626 (in Chinese). | |
11 | 王磊, 张香文, 邹吉军, 等. 密度大于1的高密度液体碳氢燃料合成及复配研究[J]. 含能材料, 2009, 17(2): 157-160, 201. |
WANG L, ZHANG X W, ZOU J J, et al. Synthesis and blending of high-density hydrocarbon fuels with density beyond 1.0 g∙cm-3 [J]. Chinese Journal of Energetic Materials, 2009, 17(2): 157-160, 201 (in Chinese). | |
12 | MEHTA R N, CHAKRABORTY M, PARIKH P A. Nanofuels: Combustion, engine performance and emissions[J]. Fuel, 2014, 120: 91-97. |
13 | OJHA P K, KARMAKAR S. Boron for liquid fuel engines-A review on synthesis, dispersion stability in liquid fuel, and combustion aspects[J]. Progress in Aerospace Sciences, 2018, 100: 18-45. |
14 | ZOU J J, ZHANG X W, PAN L. High-energy-density fuels for advanced propulsion[M]. Hoboken: John Wiley & Sons, Ltd, 2020. |
15 | 邹吉军. 对提高液体燃料能量密度的思考[J]. 含能材料, 2020, 28(5): 366-368, 355. |
ZOU J J. Thoughts on improving the energy density of liquid fuels[J]. Chinese Journal of Energetic Materials, 2020, 28(5): 366-368, 355 (in Chinese). | |
16 | NIE J R, JIA T H, PAN L, et al. Development of high-energy-density liquid aerospace fuel: A perspective[J]. Transactions of Tianjin University, 2022, 28(1): 1-5. |
17 | 熊中强, 米镇涛, 张香文, 等. 合成高密度烃类燃料研究进展[J]. 化学进展, 2005, 17(2): 359-367. |
XIONG Z Q, MI Z T, ZHANG X W, et al. Development of synthesized high-density hydrocarbon fuels[J]. Progress in Chemistry, 2005, 17(2): 359-367 (in Chinese). | |
18 | 邹吉军, 张香文, 王莅, 等. 高密度液体碳氢燃料合成及应用进展[J]. 含能材料, 2007, 15(4): 411-415. |
ZOU J J, ZHANG X W, WANG L, et al. Progress on the synthesis and application of high-density liquid hydrocarbon fuels[J]. Chinese Journal of Energetic Materials, 2007, 15(4): 411-415 (in Chinese). | |
19 | 焦燕, 冯利利, 朱岳麟, 等. 美国军用喷气燃料发展综述[J]. 火箭推进, 2008, 34(1): 30-35. |
JIAO Y, FENG L L, ZHU Y L, et al. Review of American military jet fuels development[J]. Journal of Rocket Propulsion, 2008, 34(1): 30-35 (in Chinese). | |
20 | SCHNEIDER A, WARE R E, JANOSKI E J. Isomerization of endo-tetrahydrodicyclopentadiene to a missile fuel diluent: US04086284A[P]. 1978-04-25. |
21 | 潘伦, 邓强, 鄂秀天凤, 等. 高密度航空航天燃料合成化学[J]. 化学进展, 2015, 27(11): 1531-1541. |
PAN L, DENG Q, E X T F, et al. Synthesis chemistry of high-density fuels for aviation and aerospace propulsion[J]. Progress in Chemistry, 2015, 27(11): 1531-1541 (in Chinese). | |
22 | ZHU Y H, PENG W, XU R N, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2018, 31(10): 1929-1953. |
23 | LIU L J, QI Z. Comparison of detonation characteristics in energy output of gaseous JP-10 and propylene oxide in air[J]. Fuel, 2018, 232: 154-164. |
24 | 张香文, 米镇涛, 周震寰, 等. 高能量密度燃料HDF-1与金属材料的相容性[J]. 推进技术, 2002, 23(2): 161-163. |
ZHANG X W, MI Z T, ZHOU Z H, et al. Compatibility of high energy density fuel (HDF-1) and metal material[J]. Journal of Propulsion Technology, 2002, 23(2): 161-163 (in Chinese). | |
25 | 古玲, 张香文, 米镇涛. 高密度燃料HDF-1中过氧化物生成的研究[J]. 化学推进剂与高分子材料, 2005, 3(4): 29-32. |
GU L, ZHANG X W, MI Z T. Study on the formation of peroxide in high-density fuel HDF-1[J]. Chemical Propellants & Polymeric Materials, 2005, 3(4): 29-32 (in Chinese). | |
26 | 张香文, 董飞, 周震寰, 等. 高密度燃料HDF-1与橡胶的相容性研究[J]. 燃料化学学报, 2003, 31(4): 342-348. |
ZHANG X W, DONG F, ZHOU Z H, et al. Study on compatibility of high-density fuel HDF-1 with rubbers[J]. Journal of Fuel Chemistry and Technology, 2003, 31(4): 342-348 (in Chinese). | |
27 | PAN L, FENG R, PENG H, et al. A solar-energy-derived strained hydrocarbon as an energetic hypergolic fuel[J]. RSC Advances, 2014, 4(92): 50998-51001. |
28 | PAN L, ZOU J J, ZHANG X W, et al. Photoisomerization of norbornadiene to quadricyclane using transition metal doped TiO2 [J]. Industrial & Engineering Chemistry Research, 2010, 49(18): 8526-8531. |
29 | ZOU J J, LIU Y, PAN L, et al. Photocatalytic isomerization of norbornadiene to quadricyclane over metal (V, Fe and Cr)-incorporated Ti-MCM-41[J]. Applied Catalysis B: Environmental, 2010, 95(3-4): 439-445. |
30 | ZOU J J, ZHU B, WANG L,et al. Zn- and La-modified TiO2 photocatalysts for the isomerization of norbornadiene to quadricyclane[J]. Journal of Molecular Catalysis A: Chemical, 2008, 286(1-2): 63-69. |
31 | ZHANG X W, JIANG Q, XIONG Z Q, et al. Diels-alder addition of dicyclopentadiene with cyclopentadiene in polar solvents[J]. Chemical Research in Chinese Universities, 2008, 24(2): 175-179. |
32 | WANG L, ZHANG X W, ZOU J J, et al. Acid-catalyzed isomerization of tetrahydrotricyclopentadiene: Synthesis of high-energy-density liquid fuel[J]. Energy & Fuels, 2009, 23(5): 2383-2388. |
33 | E X T F, ZHI X M, ZHANG Y M, et al. Jet fuel containing ligand-protecting energetic nanoparticles: A case study of boron in JP-10[J]. Chemical Engineering Science, 2015, 129: 9-13. |
34 | E X T F, PAN L, WANG F, et al. Al-nanoparticle-containing nanofluid fuel: Synthesis, stability, properties, and propulsion performance[J]. Industrial & Engineering Chemistry Research, 2016, 55(10): 2738-2745. |
35 | GORDON L J, LEE J B. Metals as fuels in multicomponent propellants[J]. ARS Journal, 1962, 32(4): 600-606. |
36 | ZURAWSKI R, GREEN J. An evaluation of metallized propellants based on vehicle performance[C]∥ 23rd Joint Propulsion Conference. Reston: AIAA, 1987. |
37 | RAPP D, ZURAWSKI R. Characterization of aluminum/RP-1 gel propellant properties[C]∥ 24th Joint Propulsion Conference. Reston: AIAA, 1988. |
38 | RAPP D. High energy-density liquid rocket fuel performance[C]∥ 26th Joint Propulsion Conference. Reston: AIAA, 1990. |
39 | PALASZEWSKI B, POWELL R. Launch vehicle performance using metallized propellants[J]. Journal of Propulsion and Power, 1994, 10(6): 828-833. |
40 | PALASZEWSKI B, RAPP D. Design issues for propulsion systems using metallized propellants[C]∥ Conference on Advanced SEI Technologies. Reston: AIAA, 1991. |
41 | PALASZEWSKI B. Metallized propellants for the human exploration of Mars[J]. Journal of Propulsion and Power, 1992, 8(6): 1192-1199. |
42 | PALASZEWSKI B. Lunar missions using advanced chemical propulsion─System design issues[J]. Journal of Spacecraft and Rockets, 1994, 31(3): 458-465. |
43 | GEDANKEN A. Using sonochemistry for the fabrication of nanomaterials[J]. Ultrasonics Sonochemistry, 2004, 11(2): 47-55. |
44 | GAN Y N, QIAO L. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles[J]. Combustion and Flame, 2011, 158(2): 354-368. |
45 | LI Z Q, FU C, GAN Y, et al. Investigation on spray and combustion characteristics of boron/ethanol nanofuel utilizing 50 kHz repetition rate high-speed laser measurements[J]. Fuel, 2021, 287: 119562. |
46 | 鄂秀天凤, 彭浩, 邹吉军, 等. 含有纳米铝颗粒的高密度悬浮燃料研究[J]. 推进技术, 2016, 37(5): 974-978. |
E X T F, PENG H, ZOU J J, et al. Study on Al NPs-containing suspension as high-density liquid fuel[J]. Journal of Propulsion Technology, 2016, 37(5): 974-978 (in Chinese). | |
47 | 裴慧霞, 鄂秀天凤, 张磊, 等. 添加高能纳米硼颗粒的高密度液体碳氢燃料研究[J]. 现代化工, 2017, 37(1): 111-114. |
PEI H X, E X T F, ZHANG L, et al. Study on high-density liquid fuel containing energetic nanoparticles[J]. Modern Chemical Industry, 2017, 37(1): 111-114 (in Chinese). | |
48 | 伍婷婷, 刘建忠, 陈冰虹, 等. 纳米流体燃料稳定性及金属颗粒改性方法研究进展[J]. 推进技术, 2020, 41(3): 481-492. |
WU T T, LIU J Z, CHEN B H, et al. Research progress on nanofluid fuels stability and metal particle modification methods[J]. Journal of Propulsion Technology, 2020, 41(3): 481-492 (in Chinese). | |
49 | 李辰芳. 包覆硼粒子提高硼的燃烧效率[J]. 推进技术, 1994, 15(2): 53-57. |
LI C F. Coating boron particles to increase the combustion efficiency of boron fuel[J]. Journal of Propulsion Technology, 1994, 15(2): 53-57 (in Chinese). | |
50 | 鄂秀天凤. 基于亲油性纳米颗粒的高密度悬浮燃料研究[D]. 天津: 天津大学, 2015. |
E X T F. High-density suspension fuels containing oil-dispersable nanoparticles[D]. Tianjin: Tianjin University, 2015 (in Chinese). | |
51 | JAVED I, BAED S W, WAHEED K, et al. Evaporation characteristics of kerosene droplets with dilute concentrations of ligand-protected aluminum nanoparticles at elevated temperatures[J]. Combustion and Flame, 2013, 160(12): 2955-2963. |
52 | E X T F, ZHANG L, WANG F, et al. Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density fuels[J]. Frontiers of Chemical Science and Engineering, 2018, 12(3): 358-366. |
53 | MATHE V L, VARMA V, RAUT S, et al. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route[J]. Applied Surface Science, 2016, 368: 16-26. |
54 | 陈世武. 凝胶推进剂的由来与发展[J]. 火炸药, 1996(1): 47-52, 25. |
CHEN S W. Source and development of gel propellant[J]. Explosives & Propellents, 1996(1): 47-52, 25 (in Chinese). | |
55 | 闫大庆, 周宏民, 单建胜. 凝胶/膏状推进剂研究发展状况[J]. 火箭推进, 2003, 29(1): 38-46, 29. |
YAN D Q, ZHOU H M, SHAN J S. Research and development status of gel/paste propellant[J]. Journal of Rocket Propulsion, 2003, 29(1): 38-46, 29 (in Chinese). | |
56 | TEPPER F, KALEDIN L A. Combustion characteristics of kerosene containing Alex® nano-aluminum[J]. International Journal of Energetic Materials and Chemical Propulsion, 2002, 5(1-6): 195-205. |
57 | 夏益志, 王勇, 洪流, 等. 凝胶自燃推进剂着火及火焰试验[J]. 航空学报, 2020, 41(1): 123254. |
XIA Y Z, WANG Y, HONG L, et al. Experiment on ignition and flame of gelled hypergolic bipropellants[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 123254 (in Chinese). | |
58 | MUELLER D C, TURNS S R. Theoretical effects of aluminum gel propellant secondary atomization on rocket engine performance[J]. Journal of Propulsion and Power, 1996, 12(3): 591-597. |
59 | 陈志刚, 杨荣杰. 金属化凝胶推进剂的性能评估[J]. 推进技术, 1998, 19(1): 102-106. |
CHEN Z G, YANG R J. Evaluation on performance of metallized gelled propellant[J]. Journal of Propulsion Technology, 1998, 19(1): 102-106 (in Chinese). | |
60 | PADWAL M B, NATAN B, MISHRA D P. Gel propellants[J]. Progress in Energy and Combustion Science, 2021, 83: 100885. |
61 | 曹锦文, 潘伦, 张香文, 等. 含纳米铝颗粒的JP-10凝胶燃料理化及流变性能[J]. 含能材料, 2020, 28(5): 382-390. |
CAO J W, PAN L, ZHANG X W, et al. Physicochemical and rheological properties of Al/JP-10 gelled fuel[J]. Chinese Journal of Energetic Materials, 2020, 28(5): 382-390 (in Chinese). | |
62 | 鄂秀天凤, 潘伦, 张香文, 等. 高触变性高密度凝胶碳氢燃料的制备及性能[J]. 含能材料, 2019, 27(6): 501-508. |
E X T F, PAN L, ZHANG X W, et al. Synthesis and performance of high-density and high-thixotropy gelled hydrocarbon fuels[J]. Chinese Journal of Energetic Materials, 2019, 27(6): 501-508 (in Chinese). | |
63 | CAO J W, ZHANG Y C, PAN L, et al. Synthesis and characterization of gelled high-density fuels with low-molecular mass gellant[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(7): 1018-1026. |
64 | 杨立军, 刘陆昊, 富庆飞. 非牛顿流体射流雾化特性研究进展[J]. 航空学报, 2021, 42(12): 624974. |
YANG L J, LIU L H, FU Q F. Research progress in atomization characteristics of non-Newtonian fluid jet[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 624974 (in Chinese). | |
65 | SPALDING D B. The combustion of liquid fuels[J]. Symposium (International) on Combustion, 1953, 4(1): 847-864. |
66 | NAHAMONI G, NATAN B, NAHAMONI G, et al. Investigation of the combustion process of gel propellants[C]∥ 33rd Joint Propulsion Conference and Exhibit. Reston: AIAA, 1997. |
67 | KOBAYASI K. An experimental study on the combustion of a fuel droplet[J]. Symposium (International) on Combustion, 1955, 5(1): 141-148. |
68 | ROSNER D E. On liquid droplet combustion at high pressures[J]. AIAA Journal, 1967, 5(1): 163-166. |
69 | WONG S C, TURNS S R. Ignition of aluminum slurry droplets[J]. Combustion Science and Technology, 1987, 52(4-6): 221-242. |
70 | WONG S C, TURNS S R. Disruptive burning of aluminum/carbon slurry droplets[J]. Combustion Science and Technology, 1989, 66(1-3): 75-92. |
71 | MUELLER D C, TURNS S R. Some aspects of secondary atomization of aluminum/hydrocarbon slurry propellants[J]. Journal of Propulsion and Power, 1993, 9(3): 345-352. |
72 | ANTAKI P, WILLIAMS F A. Observations on the combustion of boron slurry droplets in air[J]. Combustion and Flame, 1987, 67(1): 1-8. |
73 | ANTAKI P. Studies of slurry droplet combustion and boron particle ignition[D]. Princeton: Princeton University, 1988: 97-99. |
74 | TAKAHASHI F, DRYER F L, WILLIAMS F A. Combustion behavior of free boron slurry droplets[J]. Symposium (International) on Combustion, 1988, 21(1): 1983-1991. |
75 | TAKAHASHI F, HEILWEIL I J, DRYER F L. Disruptive burning mechanism of free slurry droplets[J]. Combustion Science and Technology, 1989, 65(1-3): 151-165. |
76 | GREEN G J, TAKAHASHI F, WALSH D E, et al. Aerodynamic device for generating mono-disperse fuel droplets[J]. Review of Scientific Instruments, 1989, 60(4): 646-652. |
77 | ANTAKI P. Transient processes in a rigid slurry droplet during liquid vaporization and combustion[J]. Combustion Science and Technology, 1986, 46(3-6): 113-135. |
78 | CHO S Y, TAKAHASHI F, DRYER F L. Some theoretical considerations on the combustion and disruption of free slurry droplets[J]. Combustion Science and Technology, 1989, 67(1-3): 37-57. |
79 | TYAGI H, PHELAN P E, PRASHER R, et al. Increased hot-plate ignition probability for nanoparticle-laden diesel fuel[J]. Nano Letters, 2008, 8(5): 1410-1416. |
80 | GAN Y N, QIAO L. Burning characteristics of fuel droplets containing dilute energetic nanopartilces[C]∥ 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
81 | GAN Y N, QIAO L. Burning characteristics of fuel droplets with addition of nanoparticles at dilute and dense particle loading[C]∥ 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. |
82 | GAN Y N, QIAO L. Combustion of nanofluid fuels with the addition of boron and iron particles[C]∥ 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2012. |
83 | GAN Y N, LIM Y S, QIAO L. Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations[J]. Combustion and Flame, 2012, 159(4): 1732-1740. |
84 | TANVIR S, QIAO L. Effect of addition of energetic nanoparticles on droplet-burning rate of liquid fuels[J]. Journal of Propulsion and Power, 2015, 31(1): 408-415. |
85 | TANVIR S, QIAO L. Burning characteristics of liquid fuels with suspensions of energetic nanoparticles: The effect of droplet size[C]∥ 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2013. |
86 | JAVED I, BAEK S W, WAHEED K. Autoignition and combustion characteristics of heptane droplets with the addition of aluminium nanoparticles at elevated temperatures[J]. Combustion and Flame, 2015, 162(1): 191-206. |
87 | JAVED I, BAEK S W, WAHEED K. Autoignition and combustion characteristics of kerosene droplets with dilute concentrations of aluminum nanoparticles at elevated temperatures[J]. Combustion and Flame, 2015, 162(3): 774-787. |
88 | 杨大力, 夏智勋, 胡建新, 等. 煤油凝胶单液滴燃烧特性试验[J]. 航空学报, 2016, 37(3): 847-853. |
YANG D L, XIA Z X, HU J X, et al. Experimental study on ignition and combustion characteristics of single kerosene gel droplet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 847-853 (in Chinese). | |
89 | 杨大力. 凝胶单液滴蒸发燃烧特性试验研究[D]. 长沙: 国防科技大学, 2015: 46-48. |
YANG D L. Experimental study on the evaporation and combustion characteristics of single gel droplet[D]. Changsha: National University of Defense Technology, 2015: 46-48 (in Chinese). | |
90 | MORDOSKY J, ZHANG B, KUO K, et al. Spray combustion of gelled RP-1 propellants containing nano-sized aluminum particles in rocket engine conditions[C]∥ 37th Joint Propulsion Conference and Exhibit. Reston: AIAA, 2001. |
91 | ELLISON R, HALL A, MOSER M. Gelled RP-1 nanophase aluminum propellant[C]∥ 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2003. |
92 | LUO Y, XU X, ZOU J J, et al. Combustion of JP-10-based slurry with nanosized aluminum additives[J]. Journal of Propulsion and Power, 2016, 32(5): 1167-1177. |
93 | 邵昂, 朱韶华, 鄂秀天凤, 等. 含铝金属化浆体推进剂火箭发动机燃烧性能试验研究[J]. 推进技术, 2018, 39(7): 1650-1659. |
SHAO A, ZHU S H, E X T F, et al. Experimental study on combustion characteristic of rocket engine based on slurry propellant containing aluminum particles[J]. Journal of Propulsion Technology, 2018, 39(7): 1650-1659 (in Chinese). | |
94 | 刘毅, 鄂秀天凤, 李智欣, 等. 高能量密度液体燃料的火箭发动机燃烧性能研究[J]. 推进技术, 2019, 40(5): 1169-1176. |
LIU Y, E X T F, LI Z X, et al. Study on combustion performance of high-energy-density liquid fuels in rocket engine[J]. Journal of Propulsion Technology, 2019, 40(5): 1169-1176 (in Chinese). | |
95 | 靳雨树. 含纳米颗粒碳氢燃料的发动机燃烧及应用性能研究[D]. 北京: 北京航空航天大学, 2021: 57-78. |
JIN Y S. Study on combustion characteristic and engine applications of nanoparticle contained hydrocarbon fuels[D]. Beijing: Beihang University, 2021: 57-78 (in Chinese). | |
96 | VON KAMPEN J, ALBERIO F, CIEZKI H K. Spray and combustion characteristics of aluminized gelled fuels with an impinging jet injector[J]. Aerospace Science and Technology, 2007, 11(1): 77-83. |
97 | NEGRI M, CIEZKI H. Combustion of gelled propellants containing aluminum particles[C]∥ 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2013. |
98 | NEGRI M, CIEZKI H K. Combustion of gelled propellants containing microsized and nanosized aluminum particles[J]. Journal of Propulsion and Power, 2014, 31(1): 400-407. |
99 | GAFNI G, KUZNETSOV A, NATAN B. Experimental investigation of an aluminized gel fuel ramjet combustor[J]. Chemical Rocket Propulsion, 2017, 31(1): 297-315. |
100 | GAFNI G, KUZNETSOV A, HAR-LEV D, et al. Experimental investigation of a ramjet combustor using an aluminized gel fuel[C]∥ 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2013. |
101 | XIAO Y L, XIA Z X, HUANG L Y, et al. Experimental investigation of the effects of chamber length and boron content on boron-based gel fuel ramjet performance[J]. Acta Astronautica, 2019, 160: 101-105. |
102 | JIN Y S, DOU S Y, YANG Q C, et al. Performance characteristics of a scramjet engine using JP-10 fuel containing aluminum nanoparticles[J]. Acta Astronautica, 2021, 185: 70-77. |
103 | JIN Y S, DOU S Y, WANG X, et al. Effect of nano-sized aluminum additive on wall heat transfer characteristics of the liquid-fueled scramjet engine[J]. Applied Thermal Engineering, 2021, 197: 117387. |
104 | PALASZEWSKI B, ZAKANY J. Metallized gelled propellants: Oxygen/RP-1/aluminum rocket combustion experiments[C]∥ 31st Joint Propulsion Conference and Exhibit. Reston: AIAA, 1995. |
105 | PALASZEWSKI B, ZAKANY J. Metallized gelled propellants─Oxygen/RP-1/aluminum rocket heat transfer and combustion measurements[C]∥ 32nd Joint Propulsion Conference and Exhibit. Reston: AIAA, 1996. |
106 | PALASZEWSKI B. Metallized gelled propellants─Oxygen/RP-1/aluminum rocket engine calorimeter heat transfer measurements and analysis[C]∥ 33rd Joint Propulsion Conference and Exhibit. Reston: AIAA, 1997. |
[1] | 乔竑玮, 梁剑寒, 张林, 孙明波, 陈玉俏. 超声速燃烧中的概率密度函数方法研究进展[J]. 航空学报, 2024, 45(8): 28802-028802. |
[2] | 王革, 王志邦, 王富祺, 关奔, 王立民, 宁浩然. 节流式燃/氧分离发动机准一维内弹道数值研究[J]. 航空学报, 2024, 45(7): 129111-129111. |
[3] | 刘小勇, 王明福, 刘建文, 任鑫, 张轩. 超燃冲压发动机研究回顾与展望[J]. 航空学报, 2024, 45(5): 529878-529878. |
[4] | 纪鉴恒, 蔡尊, 王泰宇, 孙明波, 王振国. 宽速域超燃冲压发动机流动燃烧过程研究进展[J]. 航空学报, 2024, 45(3): 28696-028696. |
[5] | 李子光, 成鹏, 李清廉, 白晓, 曹鹏进. 背压对气液针栓单元喷雾分布特性的影响[J]. 航空学报, 2024, 45(2): 128614-128614. |
[6] | 董蒙, 谭永华, 何闯, 邢理想, 赵瑞国. 发动机泵后模拟供应系统频率特性的液流激励试验[J]. 航空学报, 2023, 44(9): 127419-127419. |
[7] | 项乐, 许开富, 陈晖, 李随波, 张凯, 刘诗鑫. 液体火箭发动机涡轮泵低温空化实验研究进展[J]. 航空学报, 2023, 44(7): 27131-027131. |
[8] | 赵翔, 夏智勋, 方传波, 马立坤, 李潮隆, 段一凡. 固体火箭超燃冲压发动机理论性能分析[J]. 航空学报, 2023, 44(5): 126971-126971. |
[9] | 陈泽灏, 陈晖, 高玉闪, 张航. 基于模型的液体火箭发动机故障诊断技术回顾与展望[J]. 航空学报, 2023, 44(23): 629016-629016. |
[10] | 包为民. 可重复使用运载火箭技术发展综述[J]. 航空学报, 2023, 44(23): 629555-629555. |
[11] | 张效溥, 任枫, 徐鹏里, 李志敏, 宿彩虹. 基于故障分辨能力的火箭发动机测量参数选择方法[J]. 航空学报, 2023, 44(22): 128522-128522. |
[12] | 蒋耀东, 徐全勇, 马玉林, 程瑶. 肼基单组元火箭发动机的动态响应[J]. 航空学报, 2023, 44(21): 529170-529170. |
[13] | 宋家辉, 许爱国, 苗龙, 廖煜淦, 梁福文, 田丰, 聂明卿, 王宁飞. 激波/平板层流边界层干扰熵增特性[J]. 航空学报, 2023, 44(21): 528520-528520. |
[14] | 曾佳进, 李军伟, 马宝印, 李春杰, 王宁飞. 火箭发动机燃烧室中燃烧噪声的计算模型[J]. 航空学报, 2023, 44(18): 128148-128148. |
[15] | 李泓瑾, 李军伟, 谢侃, 李想, 杨正, 王宁飞. 两相流对固体火箭发动机塞式喷管性能的影响[J]. 航空学报, 2023, 44(16): 127890-127890. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学