1 |
ZHAO X, XIA Z X, MA L K, et al. Research progress on solid-fueled scramjet[J]. Chinese Journal of Aeronautics, 2022, 35(1): 398-415.
|
2 |
李潮隆, 夏智勋, 马立坤, 等. 固体火箭超燃冲压发动机性能试验[J]. 航空学报, 2022, 43(12): 126075.
|
|
LI C L, XIA Z X, MA L K, et al. Experiment on performance of solid rocket scramjet[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126075 (in Chinese).
|
3 |
赵翔, 夏智勋, 马立坤, 等. 固体火箭超燃冲压发动机地面直连试验[J]. 航空兵器, 2018, 25(4): 57-61.
|
|
ZHAO X, XIA Z X, MA L K, et al. Direct-connected ground test of solid-fuel rocket scramjet[J]. Aero Weaponry, 2018, 25(4): 57-61 (in Chinese).
|
4 |
LI C L, ZHAO X, XIA Z X, et al. Influence of the vortex generator on the performance of solid rocket scramjet combustor[J]. Acta Astronautica, 2019, 164: 174-183.
|
5 |
YANG P N, XIA Z X, MA L K, et al. Experimental study on the influence of the injection structure on solid scramjet performance[J]. Acta Astronautica, 2021, 188: 229-238.
|
6 |
LV Z, XIA Z X, LIU B, et al. Experimental and numerical investigation of a solid-fuel rocket scramjet combustor[J]. Journal of Propulsion and Power, 2015, 32(2): 273-278.
|
7 |
LI C L, XIA Z X, MA L K, et al. Performance evaluation for scramjet based on ground direct-connected test: A method investigation[J]. Aerospace Science and Technology, 2021, 117: 106895.
|
8 |
LIU J, WANG N f, WANG J, et al. Optimizing combustion performance in a solid rocket scramjet engine[J]. Aerospace Science and Technology, 2020, 99: 105560.
|
9 |
LI C L, XIA Z X, MA L K, et al. Numerical study on the solid fuel rocket scramjet combustor with cavity[J]. Energies, 2019, 12(7): 1235.
|
10 |
HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Reston: AIAA, 1994.
|
11 |
王超. 超燃冲压发动机总体方案设计与优化研究[D]. 长沙: 国防科技大学, 2011.
|
|
WANG C. Design and optimization research on scramjet system scheme[D]. Changsha: National University of Defense Technology, 2011 (in Chinese).
|
12 |
ROUX J A. Optimum freestream Mach number for maximum thrust flux for ideal ramjet/scramjet[J]. Journal of Thermophysics and Heat Transfer, 2012, 26(2): 390-392.
|
13 |
ROUX J A. Parametric ideal scramjet cycle analysis[J]. Journal of Thermophysics and Heat Transfer, 2011, 25(4): 581-585.
|
14 |
ROUX J A, SHAKYA N, CHOI J. Revised parametric ideal scramjet cycle analysis[J]. Journal of Thermophysics and Heat Transfer, 2013, 27(1): 178-183.
|
15 |
YANG Q C, CHANG J T, BAO W. Thermodynamic analysis on specific thrust of the hydrocarbon fueled scramjet[J]. Energy, 2014, 76: 552-558.
|
16 |
ZHANG D, YANG S B, ZHANG S L, et al. Thermodynamic analysis on optimum performance of scramjet engine at high Mach numbers[J]. Energy, 2015, 90: 1046-1054.
|
17 |
ROUDAKOV A S, SEMENOV V L, HICKS J W. Recent flight test results of the joint CIAM-NASA Mach 6.5 scramjet flight program: AIAA-1998-1643[R]. Reston: AIAA, 1998.
|
18 |
SMART M K, HASS N E, PAULL A. Flight data analysis of the HyShot 2 scramjet flight experiment[J]. AIAA Journal, 2006, 44(10): 2366-2375.
|
19 |
RONDEAU C M, JORRIS T R. X-51A scramjet demonstrator program: Waverider ground and flight test[R]. 2013.
|
20 |
PECNIK R, TERRAPON V E, HAM F, et al. Reynolds-averaged Navier-Stokes simulations of the HyShot II scramjet[J]. AIAA Journal, 2012, 50(8): 1717-1732.
|
21 |
CHAPUIS M, FEDINA E, FUREBY C, et al. A computational study of the HyShot II combustor performance[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2101-2109.
|
22 |
FRY R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1): 27-58.
|
23 |
曾明, 刘伟, 邹建军. 空气动力学基础[M]. 北京: 科学出版社, 2016.
|
|
ZENG M, LIU W, ZOU J J. Aerodynamics fundamentals[M]. Beijing: Science Press, 2016 (in Chinese).
|
24 |
WALTRUP P J, BILLIG F S. Structure of shock waves in cylindrical ducts[J]. AIAA Journal, 1973, 11(10): 1404-1408.
|
25 |
SCHLICHTING H. Boundary-layer theory[M]. New York: McGraw-Hill Book Company, 1979.
|
26 |
ZHAO X, XIA Z X, LIU B, et al. Numerical study on solid-fuel scramjet combustor with fuel-rich hot gas[J]. Aerospace Science and Technology, 2018, 77: 25-33.
|
27 |
OU M, YAN L, TANG J f, et al. Thermodynamic performance analysis of ramjet engine at wide working conditions[J]. Acta Astronautica, 2017, 132: 1-12.
|
28 |
SULAIMAN A N B. Thermodynamic analysis of gas turbine[D]. Tronoh: University Teknologi Petronas, 2012.
|
29 |
LARSSON J, LAURENCE S, BERMEJO-MORENO I, et al. Incipient thermal choking and stable shock-train formation in the heat-release region of a scramjet combustor. Part II: Large eddy simulations[J]. Combustion and Flame, 2015, 162(4): 907-920.
|
30 |
LAURENCE S J, LIEBER D, SCHRAMM J M, et al. Incipient thermal choking and stable shock-train formation in the heat-release region of a scramjet combustor. Part I: Shock-tunnel experiments[J]. Combustion and Flame, 2015, 162(4): 921-931.
|
31 |
BOLENDER M A, DOMAN D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2007, 44(2): 374-387.
|
32 |
Cantera. Cantera is an open-source suite of tools for problems involving chemical kinetics, thermodynamics, and transport processes[EB/OL].[2022-02-24]. .
|
33 |
SCHRAMM J M, KARL S, HANNEMANN K, et al. Ground testing of the HyShot II scramjet configuration in HEG: AIAA-2008-2547[R]. Reston: AIAA, 2008.
|
34 |
NORDIN-BATES K, FUREBY C, KARL S, et al. Understanding scramjet combustion using LES of the HyShot II combustor[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2893-2900.
|
35 |
MCCLENDON S E, MILLER W H, HERTY C H. Fuel selection criteria for ducted rocket application: AIAA-1980-1120[R]. Reston: AIAA, 1980.
|
36 |
KUBOTA N, MIYATA K, KUWAHARA T, et al. Energetic solid fuels for ducted rockets (III)[J]. Propellants, Explosives, Pyrotechnics, 1992, 17(6): 303-306.
|
37 |
陈斌斌. 含硼固冲补燃室燃烧过程与燃烧组织技术研究[D]. 长沙: 国防科技大学, 2018.
|
|
CHEN B B. Research on the combustion process and combustion technology of boron-based solid ducted rockets[D]. Changsha: National University of Defense Technology, 2018 (in Chinese).
|