1 |
左林玄, 张辰琳, 王霄, 等. 高超声速飞机动力需求探讨[J]. 航空学报, 2021, 42(8): 525798.
|
|
ZUO L X, ZHANG C L, WANG X, et al. Requirement of hypersonic aircraft power[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525798 (in Chinese).
|
2 |
AN B, YANG L C, WANG Z G, et al. Characteristics of laser ignition and spark discharge ignition in a cavity-based supersonic combustor[J]. Combustion and Flame, 2020, 212: 177-188.
|
3 |
彭瀚, 黄玥, 刘晨, 等. 横向射流影响缓燃向爆震转捩过程的试验研究[J]. 航空学报, 2018, 39(2): 121412.
|
|
PENG H, HUANG Y, LIU C, et al. Experimental study of effects of fluidic obstacle parameters on deflagration-to-detonation transition[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 121412 (in Chinese).
|
4 |
王璐, 高亮杰, 钱战森, 等. 低马赫数下多凹腔燃烧室非稳态燃烧过程[J]. 航空学报, 2016, 37(S1): 112-118.
|
|
WANG L, GAO L J, QIAN Z S, et al. Unsteady combustion process of multi-cavity combustion chamber at low Mach number[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1): 112-118 (in Chinese).
|
5 |
WANG H B, SONG X L, LI L, et al. Lean blowoff behavior of cavity-stabilized flames in a supersonic combustor[J]. Aerospace Science and Technology, 2021, 109: 106427.
|
6 |
WALTRUP P J, WHITE M E, ZARLINGO F, et al. History of U.S. navy ramjet, scramjet, and mixed-cycle propulsion development[J]. Journal of Propulsion and Power, 2002, 18(1): 14-27.
|
7 |
FOELSCHE R, LEYLEGIAN J, BETTI A, et al. Progress on the development of a freeflight atmospheric scramjet test technique[C]∥ Proceedings of the AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005.
|
8 |
WALKER S, RODGERS F, PAULL A, et al. HyCAUSE flight test program[C]∥ Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008.
|
9 |
BISEK N J. High-fidelity simulations of the HIFiRE-6 flow path[C]∥ Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016.
|
10 |
CHAN W Y K, RAZZAQI S A, TURNER J C, et al. Freejet testing of the HIFiRE 7 scramjet flowpath at Mach 7.5[J]. Journal of Propulsion and Power, 2018, 34(4): 844-853.
|
11 |
VANYAI T, GRIEVE S, STREET O, et al. Fundamental scramjet combustion experiments using hydrocarbon fuel[J]. Journal of Propulsion and Power, 2019, 35(5): 953-963.
|
12 |
VANYAI T, LANDSBERG W O, MCINTYRE T J, et al. OH visualization of ethylene combustion modes in the exhaust of a fundamental, supersonic combustor[J]. Combustion and Flame, 2021, 226: 143-155.
|
13 |
LIU Q L, BACCARELLA D, LANDSBERG W, et al. Cavity flameholding in an optical axisymmetric scramjet in Mach 4.5 flows[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3733-3740.
|
14 |
LIU Q L, BACCARELLA D, LEE T H. Combustion stabilization in an axisymmetric scramjet in Mach 4.5 flows[C]∥ Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
|
15 |
LIU Q L, BACCARELLA D, MCGANN B, et al. Dual-mode operation and transition in axisymmetric scramjets[J]. AIAA Journal, 2019, 57(11): 4764-4777.
|
16 |
BACCARELLA D, LIU Q L, MCGANN B J, et al. Combustion induced choking and unstart initiation in a circular constant-area supersonic flow[J]. AIAA Journal, 2019, 57(12): 5365-5376.
|
17 |
BACCARELLA D, LIU Q, MCGANN B, et al. Isolator-combustor interactions in a circular model scramjet with thermal and non-thermal choking-induced unstart[J]. Journal of Fluid Mechanics, 2021, 917: A38.
|
18 |
LANDSBERG W O, GIBBONS N N, WHEATLEY V, et al. Flow field manipulation via fuel injectors in scramjets[C]∥ Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017.
|
19 |
LANDSBERG W O, GIBBONS N N, WHEATLEY V, et al. Improving scramjet performance through flow field manipulation[J]. Journal of Propulsion and Power, 2018, 34(3): 578-590.
|
20 |
LANDSBERG W O, WHEATLEY V, SMART M K, et al. Performance of high Mach number scramjets - Tunnel vs flight[J]. Acta Astronautica, 2018, 146: 103-110.
|
21 |
LANDSBERG W O, WHEATLEY V, SMART M K, et al. Enhanced supersonic combustion targeting combustor length reduction in a Mach 12 scramjet[J]. AIAA Journal, 2018, 56(10): 3802-3807.
|
22 |
DAMM K A, LANDSBERG W O, MECKLEM S, et al. Performance analysis and validation of an explicit local time-stepping algorithm for complex hypersonic flows[J]. Aerospace Science and Technology, 2020, 107: 106321.
|
23 |
马光伟, 孙明波, 赵国焱, 等. 不同壁温及差分格式下超燃冲压发动机的仿真[J]. 航空学报, 2021, 42(S1): 16-27.
|
|
MA G W, SUN M B, ZHAO G Y, et al. Simulation of scramjet under different wall temperatures and difference schemes[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 16-27 (in Chinese).
|
24 |
LUO S J, NI Z Y, LIU Y F. Study on the characteristics of interaction flowfields induced by supersonic jet on a revolution body[J]. Theoretical and Applied Mechanics Letters, 2017, 7(6): 362-365.
|
25 |
BACCARELLA D, LIU Q L, LEE T H, et al. The supersonic combustion facility ACT-2[C]∥ Proceedings of the 55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017.
|
26 |
DAI P, CHEN Z. Effects of NOx addition on autoignition and detonation development in DME/air under engine-relevant conditions[J]. Proceedings of the Combustion Institute, 2019, 37(4): 4813-4820.
|
27 |
HASH C A, DRUMMOND P M, EDWARDS J R, et al. Numerical simulation of stable and unstable ram-mode operation of an axisymmetric ethylene-fueled inlet-isolator-combustor configuration[J]. Combustion and Flame, 2022, 242: 112157.
|
28 |
TANG T, WANG H B, SUN M B, et al. Evaluation of flamelet/progress variable model for the applications in supersonic combustion using hybrid RANS/LES approach[J]. Aerospace Science and Technology, 2022, 126: 107633.
|
29 |
MA G W, SUN M B, ZHAO G Y, et al. Effect of injection scheme on asymmetric phenomenon in rectangular and circular scramjets[J]. Chinese Journal of Aeronautics, 2022, 36(1): 216-230.
|
30 |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
|
31 |
杨越, 游加平, 孙明波. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型[J]. 航空学报, 2015, 36(1): 261-273.
|
|
YANG Y, YOU J P, SUN M B. Modeling of turbulence-chemistry interactions in numerical simulations of supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 261-273 (in Chinese).
|
32 |
PITSCH H. FlameMaster: A C++ computer program for 0D combustion and 1D laminar flame calculations[EB/OL]. [2023-06-16]. .
|
33 |
SAGHAFIAN A, TERRAPON V E, PITSCH H. An efficient flamelet-based combustion model for compressible flows[J]. Combustion and Flame, 2015, 162(3): 652-667.
|
34 |
CAO C M, YE T H, ZHAO M J. Large eddy simulation of hydrogen/air scramjet combustion using tabulated thermo-chemistry approach[J]. Chinese Journal of Aeronautics, 2015, 28(5): 1316-1327.
|
35 |
ZHAO G Y, SUN M B, WU J S, et al. A flamelet model for supersonic non-premixed combustion with pressure variation[J]. Modern Physics Letters B, 2015, 29(21): 1550117.
|
36 |
TANG T, WANG Z G, HUANG Y H, et al. Investigation of combustion structure and flame stabilization in an axisymmetric scramjet[J]. AIAA Journal, 2023, 61(2): 585-601.
|
37 |
LI L, WANG H B, ZHAO G Y, et al. Efficient WENOCU4 scheme with three different adaptive switches[J]. Journal of Zhejiang University: Science A, 2020, 21(9): 695-720.
|
38 |
TANG T, WANG Z G, LI H S, et al. A method for optimizing reaction progress variable and its application[J]. Aerospace Science and Technology, 2022, 130: 107888.
|
39 |
MA G W, SUN M B, ZHAO G Y, et al. Numerical investigation of an axisymmetric model scramjet assisted with cavity of different aft wall angles[J]. International Journal of Aerospace Engineering, 2021, 2021: 7525824.
|
40 |
POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000.
|
41 |
KAWAI S, LELE S K. Large-eddy simulation of jet mixing in supersonic crossflows[J]. AIAA Journal, 2010, 48(9): 2063-2083.
|
42 |
LIU Q L, BACCARELLA D, MCGANN B, et al. Cavity-enhanced combustion stability in an axisymmetric scramjet model[J]. AIAA Journal, 2019, 57(9): 3898-3909.
|
43 |
YAMASHITA H, SHIMADA M, TAKENO T. A numerical study on flame stability at the transition point of jet diffusion flames[J]. Symposium (International) on Combustion, 1996, 26(1): 27-34.
|
44 |
BALAKRISHNAN G, WILLIAMS F A. Turbulent combustion regimes for hypersonic propulsion employing hydrogen-air diffusion flames[J]. Journal of Propulsion and Power, 1994, 10(3): 434-437.
|
45 |
MURA A, TECHER A, LEHNASCH G. Analysis of high-speed combustion regimes of hydrogen jet in supersonic vitiated airstream[J]. Combustion and Flame, 2022, 239: 111552.
|
46 |
INGENITO A, BRUNO C. Physics and regimes of supersonic combustion[J]. AIAA Journal, 2010, 48(3): 515-525.
|